
2022 EDITION

PLC TECHNICIAN HANDBOOK
Practical Guide to Programmable Logic Controllers

PLC TECHNICIAN HANDBOOK

www.gbctechtraining.com

© 2022 George Brown College
160 Kendal Ave, Toronto, ON M5R 1M3

Practical Guide to Programmable Logic Controllers

3

PREFACE

PLCs have become an integral part of manufacturing in the twenty-first century and now dominate industrial
automation. To have a meaningful and successful career in the field requires a thorough understanding of the
key foundational skills and theoretical concepts of PLCs.

The PLC Technician’s Handbook was developed to be a compact collection of fundamental content for
practicing automation and PLC technicians to reference through their career. The handbook is broken down
into three sections for easy reference: first, a series of articles including basic programming & tips and
common practices, second, programming examples, and third, supplemental information such as instruction
sets of the main ladder logic programming commands and important schematic symbols.

Special thanks to Dwayne Nehls, Shimona Babb and Surajit Barua for their valuable assistance and
contribution to the creation of the handbook.

We hope that this handbook helps you develop a fuller understanding and practice with PLCs and becomes
a useful reference to you in the future.

4

1. PLC Technician Handbook

GENERAL OVERVIEW OF PLCS

What are the essential elements of a PLC system? . 5

How PLCs are applied in various industries. 8

The evolution of PLCs. 10

BASICS OF PROGRAMMING

Different types of PLC programming languages. 13

Basic Instructions and Operation of a PLC. 17

Time Driven routine segments. 19

Event Driven program segments. 21

Counters . 22

TIPS AND COMMON PRACTICES

SCADA, what is it and how does it work. 24

File based addressing. 26

Reducing Scan time . 35

2. Program Examples

PLC Timer Instructions . 44

Decision Making . 49

3. Supplemental Content

Common PLC Field Devices and Schematic Symbols. 57

Number Systems and Codes used with PLC. 61

Core Instruction Set. 76

TABLE OF CONTENTS

5PLC TECHNICIAN HANDBOOK

The world of manufacturing has been changing rapidly over the past decade. Processes are largely automated
and as a result, the quality of products that are produced and the efficiency of systems that produce them is
at an unprecedented level. Despite these changes, programmable logic controllers have remained a critical
component of these systems despite being invented in the 1960s.

PLCs come in a variety of sizes and with different capabilities, but all include the following six essential systems:

  • Central processing unit

  • Rack or mounting

  • Input assembly

Here’s an overview of each and what they do.

Processor or Central Processing Unit (CPU)

Often referred to as the “brains” of the PLC, the processor or central processing unit is responsible for
the execution of commands. The industry has made an effort to use a standardized list of programming
languages, namely:

  • Structured Text

  • Ladder Diagram

  • Sequential Function Chart

  • Instruction List

  • Function Block diagram

In spite of aforementioned list of languages being
used, it’s important to note that each manufacturer
has a different method of implementing the code.

Rack or Mounting

Though not a universal truth, most medium to large
PLC systems are assembled so that their individual
components (things like the CPU or processor, the
I/O, and power supply) are held together within a
mounting or rack. Smaller PLC systems often contain
all of the components into one compact housing
(often referred to as a shoebox, or brick).

WHAT ARE THE ESSENTIAL ELEMENTS
OF A PLC SYSTEM?

PROCESSOR

RUN REM PROG

RUN

FORCE

BAT

I/O

RS232

OK

Processor

A General Overview of PLCs

  • Output assembly

  • Power supply

  • Programming unit

6PLC TECHNICIAN HANDBOOK

What Are the Essential Elements of a PLC System?

Input Assembly

In terms of functions, the input assembly has two.
The first is to receive external signals from field
devices and control stations (switches, sensors).
The second is to display the input point status.

Output Assembly

Outputs are the pieces of equipment used by the
PLC to execute the commands, and are typically
used to control a manufacturing process (motors,
pumps, actuators, lights, etc.).

There are two types of I/O: Analog I/O and
Specialty I/O. The differences between the two are
outlined below.

1.	 Analog I/O refers to inputs and outputs that are responsible for a range (e.g. the running speed of
a motor). This type of input operates based on continuous change of variable ranges (temperature,
pressure, etc.) In this case, the output would include setting the speed of the motor.

2.	 As the name implies, Specialty I/O performs specific tasks, controlling things like high speed counters.
Digital I/O operates in using a binary change (yes/no or on/off).

The PLC Technician program uses the PLCLogix simulation software to teach students about the I/O assembly.
The image above is an example of the software’s interface, containing two discrete input modules, two discrete
output modules, two TTL modules for BCD control and display, and two analog modules.

Power Supply​

If the CPU is the brains of the PLC, then certainly the power supply is the digestive system, commonly supplying
the unit with a 24VDC or 120VAC line voltage. The power supply status is continuously monitored and can
include a switch for selecting a particular programming mode. Thanks to the power supply’s integral lithium
battery, in the event of a power failure the contents
stored in memory will not change from what they were
prior to the loss of power.

Programming Unit, Device, or PC/
Software

The modern PLC is programmed using a programmer
or software that is built using a PC or laptop and then
loaded into the PLC. PLC software’s big advantage
is that they can run simulations to see how a PLC
system will perform in a virtual environment. RSLogix
is one of the most popular simulation tools today.

At George Brown College, our students learn using
these same virtual environments. We use PLCLogix
software, which emulates RSLogix and provides the

Input/Output Interface

INPUT OUTPUT

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

POWER

Power Supply

7PLC TECHNICIAN HANDBOOK

What Are the Essential Elements of a PLC System?

ability to test and practice PLC programs. Students can apply the knowledge acquired from this program in
the real world PLC environments.

PLCs Are More Relevant than Ever

In truth, it’s difficult to imagine a world in which PLCs did not exist. The manufacturing process would
certainly not be what it is today, and would likely rely more heavily on greater quantities of human capital
to achieve similar levels of production. Even though the base technology responsible for the typical PLC is
decades old, PLCs remain a crucial component to manufacturing, robotic and automated systems.

8PLC TECHNICIAN HANDBOOK

In the most basic terms, a programmable logic controller (PLC) is a computer that’s equipped with a
microprocessor, but has no keyboard, mouse, or monitor. Though this description might make it seem like PLCs
suffer from limited functionality, quite the opposite is true. In fact, PLCs are built to drive the most complicated
manufacturing processes and withstand very harsh industrial environments. This article will examine how these
sophisticated machines are used in different industries.

Oil Industry

Public opinion may be shifting away from fossil fuels in favor of more ecologically friendly alternative energy
sources, but there is still a strong demand for the extraction of oil and natural gas. Unfortunately, many of
the world’s remaining reserves are difficult to access, meaning that companies are pivoting away from the
historically simple, vertically drilled, single well operations to multi-well operations made possible by directional
or non-vertical drilling. While this process is more efficient (multi-well operations allow companies to drill more
than one well at each site, meaning that operations can be centralized and less impact to the surrounding
environment), it is also more complicated, so a more robust system is needed to control the site’s equipment.

For accurate readings of inputs and outputs and to control the multitude of valves, pumps, and sensors that
allow each well and well pad to operate safely is controlled by its own PLC. PLCs are often paired with a Human
Machine Interface, or HMI, that allows users to monitor the health of the system, manually override controls,
view system alarms, or get a glimpse of the system in operation in real time.

PLCs allow resource gathering operations to scale up in size with relative ease, since additional PLCs can be
added to the system as new well pads are added. PLCs and HMI systems also help maintenance crews quickly
identify potential issues on site, resulting in less wasted time performing system diagnostics. ​

Glass Industry

While PLCs can efficiently control actuators and valves and perform actions based on data gathered by sensors,
these are not the only uses for PLCs in an industrial setting. In fact, the glass industry has widely used PLCs for
many years to help manage the precise material ratios required by the production process. The manufacturing
of glass is a surprisingly complicated endeavor and is largely made possible in part by the robust data gathering
capabilities and advanced quality control afforded by PLC technology when paired with a Distributed Control
System (DCS). At one point, glass manufacturers relied exclusively on their DCS for their operations, but the
associated high cost of these systems propagated a need for a less costly alternative.

In recent years, the equipment used in the manufacture of glass has become more sophisticated, further
increasing the demand for PLC solutions that are based on a DCS, which in turn is driving the demand for
technicians who have completed PLC programming courses. ​

Cement Industry

Much like the production of glass, the cement industry relies heavily on equipment and software capable of
mixing various raw materials with consistency so that the quality of the finished product is at a consistently high

HOW PLCS ARE APPLIED IN VARIOUS
INDUSTRIES

9PLC TECHNICIAN HANDBOOK

How PLCs Are Applied In Various Industries

level. The role of the PLC in this industry varies, but in particular, PLCs control ball milling, coal kiln, and shaft
kiln operations.

Under Control

Admittedly, the above represents just a few of the industries that rely on PLCs in the manufacture of their
products. PLCs can be found in most factories when automation is used including those that mass produce
food, vehicles, textiles and more.

10PLC TECHNICIAN HANDBOOK

Nowadays, with almost every service imaginable available to us on our smartphone, it’s difficult to envision
what technology was like before the invention of a single controller. For factories and manufacturing plants, the
invention of programmable logic controllers (or PLCs) revolutionized the industrial automation process, as its
cutting-edge technology replaced a complicated system of electromagnetic relays with a singular controller.

In industrial workplaces, PLCs are still the preferred choice over other systems. The system has evolved to
incorporate modern technologies, while maintaining the durability of the design to withstand the conditions in a
factory setting.

In order to gain the best understanding and appreciation of PLCs, it’s important to look at the history of the PLC,
how it has evolved, and why it still remains one of the most important automation inventions used today.

What Are PLCs?

Programmable logic controllers are small industrial computers. Their design uses modular components in a
single device to automate customized control processes. They differ from most other computing devices, as
they are intended for and tolerant of severe conditions of factory settings such as dust, moisture, and extreme
temperatures.

Industrial automation began long before PLCs. In the early 1900s until their invention, the only way to control
machinery was through the use of complicated electromechanical relay circuits. Each motor would need to be
turned ON/OFF individually. This resulted in factories needing massive cabinets full of power relays.

As industrial automation continued to grow, modern factories of the time needed dozens of motors with ON/
OFF switches to control one machine, and all these relays had to be hardwired in a very specific way. PLCs were
developed as a solution to have one solid control as an electronic replacement for hard-wired relay systems.

First Automotive PLCs

In 1968, the invention of the first PLC revolutionized the automation industry. First adopted by the automotive
sector, General Motors began to deploy PLCs into their operations in 1969. Today, PLCs have broadly been
accepted as the standard automated control system in manufacturing industries.

Known as “The Father of the PLC,” Dick Morely first came up with the vision of a programmable controller which
could work for every job. He put the proposal together on January 1, 1968. Along with the team at his company
(Bedford and Associate) they created a design for a unit which would be modular and rugged while using no
interrupts. They called it the 084, which was named after their 84th project.

At the same time as the 084, Bill Stone with GM Hydramatic (automatic transmission division of General Motors)
was having the same issue: problems with reliability and documentation for the machines in his plant. His
solution proposed a solid-state controller as an electronic replacement for hard-wired relay systems.

For this reason, Morely insists he is not the inventor of the PLC. Morley stated: “the programmable controller’s
time was right. It invented itself because there was a need for it, and other people had that same need.”

THE EVOLUTION OF PLCS

https://www.plctechnician.com/news-blog/5-important-uses-plcs-manufacturing

11PLC TECHNICIAN HANDBOOK

The Evolution of PLCS

PLCs were designed so that they could easily be understood and used by plant engineers and maintenance
electricians, using a software called Ladder Logic. Widely used in PLCs today, Ladder Logic is a programming
language which uses ladder diagrams which resemble the rails and rungs of a traditional relay logic circuit.

The Evolution of PLCs in Industrial Automation

After their initial success with the 084, Bedford and Associates changed its name to Modicon PLC, which stood
for Modular Digital Controller. Modicon 084 became the name associated with the very first PLC.

In the next few decades, the PLC evolved in numerous ways to adapt to various environments and integrate the
latest modern technologies.

The emergence of competitors who developed similar systems which rivalled Modicon sparked the need for
new innovations. As a result, the development of the “Data Highway” by Allen-Bradley and “Modus” by Modicon
allowed PLCs to exchange information with each other.

As PLCs became more widely adopted, the need for a vendor-independent standardized programming language
for industrial automation led to the introduction of the IEC 61131-3 standard — the international standard held
for PLC software made by the International Electrotechnical Commission.

At the start of the 1990s, end users began making special requests. Plant managers wished for the new
machinery to have industrial terminals with PLC monitoring software. They wanted machines which could tell
the technicians what was amiss rather than spend hours troubleshooting; this resulted in the development of the
programmable human-machine interface (HMI).

The implementation of HMI with new devices eventually brought internet connection to the factory floor.

PLC Programming in the Workplace Today

In modern industrial factories and manufacturing plants, the PLC is still the preferred system over PCs. As their
technology continues to evolve, there is a steady demand for skilled PLC Technicians who are qualified to install,
repair and maintain the systems.

Designed to be a more streamlined alternative to relay
systems and switch boxes, PLCs have a dedicated
OS and limited functionality. This significantly reduces
the risk of malware attacks compared to other
computing devices. PC devices require top-of-the
line antivirus software and constant monitoring- a
headache which PLCs, for the most part, avoid.

The design of the PLC has always been able to
withstand the extreme temperatures, chemicals,
vibrations, and other conditions of an industrial
setting. Compared to the original Modicon 084, PLCs
today are a fraction of the size, have considerable
solid-state memory, and the most prevalent
enhancement for the industry, drastically
improved speed. Technician operating a PLC

https://www.plctechnician.com/plc-program-outline

12PLC TECHNICIAN HANDBOOK

The Evolution of PLCS

There continues to be an increase in demand for skilled and qualified technicians who receive PLC training.
Many technical colleges and institutions offer PLC training online as a convenient option for those who wish to
expand their professional qualifications while still working. Adding a PLC Technician Certificate to your existing
resume opens the possibility for new job opportunities, promotions, and higher pay.

PLCs Continue to Evolve

PLCs remain one of the most important innovations in the history of industrial automation. These devices, which
replaced complicated electromagnetic relays with a single controller, are still widely used today. The design has
evolved to improve the technology, while maintaining its durability for factory settings.

Qualified PLC Technicians are valuable to any manufacturing plant or industrial workplace. As the technology
of the PLC evolves, there is a demand for employees with skills in the fundamentals of PLC programming. PLC
classes online offer simulation software which enables you to design, run, test, and debug ladder logic programs
and simulate the operation of real-world PLC applications.

https://www.plctechnician.com/highlights

13PLC TECHNICIAN HANDBOOK

Programmable Logic Controllers (PLCs) are general-purpose control devices often used in plants or
manufacturing systems. They provide both a useful and efficient control solution for a variety of applications,
and can accept inputs from a variety of devices, such as motion detectors, joysticks and buttons, amongst
others. In turn, PLCs are able to produce outputs that control lights, motors and sound effects, amongst others.
Programming resources for this input-output system can include timers, counters and other variables.

While PLCs can be very effective in their commercial applications, they come with a steep learning curve. There
is some difficulty in learning their functionality as well as inherent difficulty with program maintenance using their
traditional Relay Ladder Logic (RLL) programming language. It should also be noted that PLCs from different
manufacturers can be programmed in various ways.

If you’re an aspiring PLC technician or considering enrolling in an online PLC training course, there are three
primary PLC programming languages of which you should be aware.

1. Function Block Diagram

Function Block Diagram (FBD) is the fundamental language for all PLC programmers. It’s relatively simple in
nature and programs functions together within a PLC program graphically.As its name would suggest, FBD
allows a PLC technician to put functions written with lines of code into boxes, or blocks.

You can then connect these boxes to create the larger PLC program. Almost all PLC programs are written, at
least partially, with FBD, because it offers the technician the ability to connect various functions together. The
function blocks are integral to this programming language, as they delineate the relationship between input and
output functions.

Within the FBD language, there are a few standard blocks. Amongst the most important ones include:

  • Bit Logic Function Blocks

  • Bistable Function Blocks

  • Edge Detection

  • Timer Function Blocks

  • Counter-Function Blocks

There is an infinite number of function blocks provided within a FBD, and oftentimes, one exists for almost every
operation that can be performed within PLC programming, including:

  • Arithmetic Function Blocks;

  • Bit Shift Function Blocks;

DIFFERENT TYPES OF PLC PROGRAMMING
LANGUAGES

Basics of Programming

14PLC TECHNICIAN HANDBOOK

Different types of PLC programming languages

  • Character String Function Blocks;

  • Conversion Function Blocks;

  • Communication Function Blocks

Additionally, many PLC technicians and enthusiasts will often build their own function blocks.

2. Ladder Diagram

Also called Ladder Logic, Ladder Diagram (LD) is a visual PLC programming language, which one can learn fairly
quickly. Those with experience with electric relay circuits may find LD programs relatively easy to grasp, as the
two look very similar. The organization, PLCOpen, has established the standards for LD making it one of the only
standardized PLC programming languages. Essentially, each function is coded into a rung and once many rungs
join together in a program, they make what looks like a ladder.

LD was created for technicians and electricians who have a background reading and understanding electrical
circuit schematics. Rather than using text, LD programming uses graphic elements called symbols, which have
been made to look like electrical symbols. An important difference, however, is that while electric circuits are
drawn horizontally, LD programs are created vertically.

As you construct the LD program vertically, the PLC will execute one rung (or symbol) at a time, as each symbol
in the ladder is an instruction. When you create a new piece of ladder logic, you will notice two vertical lines,
and it’s in between these two lines where you’re
ladder logic will live. You’ll proceed to draw vertical
connections between the original lines, creating the
rungs of information. You can then proceed to include
any of the aforementioned symbols within these
rungs, forming the instructions for the PLC. Executing
the program one rung at a time, the PLC will typically
scan all of its inputs and then proceed to execute the
program to set outputs. A few common symbols, or
instructions, include:

Examine If Closed: looks like two short vertical lines
parallel to one another with the name “I0.0” found
above the symbol. This is a conditional instruction
and is often used to check whether or not something
is true, for example, it can check if a bit is turned on.
When the PLC checks the state of its inputs, it will
assign a boolean value in its memory (either 1 or 0). If
an input is low, the bit will be set to 0, alternatively, if
an input is high, the bit will be set to 1.

Output Coil: looks like a set of parentheses and is
used to turn a bit on and off.

Output Latch: allows you to direct the PLC to perform
a continuous output even if the digital input is, let’s
say, a momentary pushbutton (that is, a device that
needs to constantly be pushed down to work). This

Examine If Closed

Output Coil

0.00

0.00

0.00

Output Latch

15PLC TECHNICIAN HANDBOOK

Different types of PLC programming languages

is especially handy, for example, when dealing with
a fan for a ventilation system where it would be
inconvenient for the operator to continuously hold
down the fan’s button.

Examine If Open: is another symbol with the memory
address “I0.1.” This function looks like the Examine
If Closed symbol, but with a diagonal line crossed
through the two vertical lines, and works in the exact opposite way of Examine If Closed.

There are a number of other symbols involved in LD programs, a few of which include:

Examine If Open

…

Subroutine
Input par ?

Return
Return par ?

?

JMP

MCR

NOP

END

?

LBL

AFI

This instruction jumps
execution to a specific routine
and initiates the execution of
this routine, called a
subroutine.

Stores recurring sections of
program logic.

Used to return to the
instruction following the a JSR
operation.

Skips sections of ladder logic.

Symbol Description

Program Control Instructions

Jump to Subroutine
Routine name ?
Input par ?
Return par ?

Target of the JMP instruction
with the same label name.

Used in pairs to create a
program zone that can
disable all rungs between
the MCR instructions.

This instruction functions
as a placeholder.

End rung in ladder logic
circuit.

Sets the rung condition
to False.

Label

End

Always False
Instruction

Master
Cont. Res.

No
Operation

Return

Jump to
Label

Subroutine

Jump to
Subroutine

Instruction
Mnemonic

Instruction
Name

SBR

RET

JSR

LBL

NOP

END

AFI

RET

JMP

JSR

SBR

MCR

16PLC TECHNICIAN HANDBOOK

Different types of PLC programming languages

3. Structured Text

The Structured Text (ST) programming language is text-based and is often regarded as one of the easiest
languages to understand for beginners and for those building programs that will be read by others. While
graphics-based programs, such as the aforementioned FBD or LD, may seem easier to decipher, using a
text-based language (such as ST) will take up less space and allow users to more easily follow the logic of
the program. Another benefit of ST is that it can be combined with different programming languages. For
example, you can create function blocks containing functions written in ST, and because ST is a standardized
programming language you can proceed to program different PLC brands with it.

Similar to ladder logic, programs written in ST are executed one line at a time. The basic syntax of ST revolves
around “Program” and “End_Program” which sandwich your PLC program, as seen below:

It’s important to note that the “End_Program” command will not end your program definitively, but rather instruct
the PLC scan cycle to start over again causing your program to repeat itself.

Your PLC programming software will likely implement the “Program”/”End_Program” construct automatically,
prompting you to write the code needed to fill the construct. While there are many syntax details that govern ST,
there are some general rules of which you should always be mindful:

All statements are divided by semi-colons;

  • ST is not case-sensitive: while it’s good practice to use
sentence-case for readability, it’s not necessary

  • Spaces have no function: similar to using sentence-
case, using spaces improve readability.

Depending on their manufacturer, PLCs use a wide array of
different programming languages. In much the same way humans
around the world speak in different languages and dialects, so
too do PLCs with the same end goal: to communicate with each
other and execute functions.

Subroutine
Input par ?

Return
Return par ?

?

JMP

MCR

NOP

END

?

LBL

AFI

This instruction jumps
execution to a specific routine
and initiates the execution of
this routine, called a
subroutine.

Stores recurring sections of
program logic.

Used to return to the
instruction following the a JSR
operation.

Skips sections of ladder logic.

Symbol Description

Program Control Instructions

Jump to Subroutine
Routine name ?
Input par ?
Return par ?

Target of the JMP instruction
with the same label name.

Used in pairs to create a
program zone that can
disable all rungs between
the MCR instructions.

This instruction functions
as a placeholder.

End rung in ladder logic
circuit.

Sets the rung condition
to False.

Label

End

Always False
Instruction

Master
Cont. Res.

No
Operation

Return

Jump to
Label

Subroutine

Jump to
Subroutine

Instruction
Mnemonic

Instruction
Name

SBR

RET

JSR

LBL

NOP

END

AFI

RET

JMP

JSR

SBR

MCR

…

Program

End Program

Your PLC
Program

Structured Text

17PLC TECHNICIAN HANDBOOK

Let’s look at the basic structure of a PLC and how it operates. In general, a PLC takes stimulus from the outside
world and brings it into a computing environment. Decision or monitoring instructions within the PLC process the
input information and instruct the outputs of the PLC to react to the stimulus in a determined manner. Field devices
bring status information to the PLC, the program interprets the information and will then discern the appropriate
actions or output to provide in response to the given input conditions. The adoption of PLC’s has resulted in the
replacement of the majority of Relay Control Logic which has been historically used to control applications.

What Are the Basic Components of a PLC?

In addition to the Input and Output rack locations, which most PLC technicians are familiar with, a PLC contains
isolation circuitry, a CPU, data and address busses, memory storage, a power supply, and usually some kind of
external MMI or man machine interface or terminal for programming. The number of types of input and output
modules will vary according to the needs of the application for which the PLC is being employed.

Above, we have a functional diagram representing the major components of a PLC system. The input and output
devices can allow for a range of voltages or currents, and can be digital or analog in nature. The specifics of the
I/O are largely dependent on the type of control application being performed. The actual PLC contains several
sections not detailed in the block diagram including facilities for communications.

BASIC INSTRUCTIONS AND OPERATION
OF A PLC

Programming Terminal

Input CPU

Memory

Power Supply

Output

Input
Devices

Output
Devices

Major Components of a PLC System

18PLC TECHNICIAN HANDBOOK

Basic Instructions and Operation of a PLC

What is a Scan Cycle?

Generally, PLC’s operate by repeating what is called a “Scan
Cycle”. This cycle consists of four basic functions. First, the
inputs are read, next the program instructions are executed after
which diagnostics and any required communications occurs,
and finally, the outputs are updated. One important aspect of
the scan cycle is the “Scan Time”. This is the total time it takes
for the PLC to perform a complete scan cycle. This time can
be critical in applications that require real time monitoring and
control.

How Are PLC’s Programmed?

A programming terminal is used to input or edit a program and allows the program to be uploaded from the PLC
to the terminal where it can be edited or downloaded to a PLC where it can be run. These terminals can be PC
computers, or simple dedicated HMI interfaces.

There are several types of languages or approaches used for programming PLCs. These include Structured
Text, Instruction Lists, Function Block Diagraming, as well as Ladder Logic programming. For the benefit of
those technicians who have no programming experience, we will be working with the ladder logic programming
approach in our discussions going forward. It uses a format that would be the most familiar for technicians who
work with electronics and industrial control equipment. This programming language is based on relay logic as
was used traditionally for industrial control applications so many aspects of it will be familiar to those technicians
who have been working in the field.

Why Ladder Logic Programming?

The primary reason ladder logic programming exists is that it allows technicians to easily interpret a PLC’s
program by rendering the program in a format very familiar to technicians who have worked with relay logic
controls prior to the advent and wide adoption of PLC’s. This programming language is very intuitive for those
familiar with electrical wiring and relay control circuits and is easy to learn. Many technicians have worked
with relays in the past. The physical device contains a coil, and one or more contacts that will change state
depending on whether the coil is energized or not. This type of device is modelled in ladder logic programming
by a OTE instruction, (serving as the coil) and one or more NO or NC contacts that are controlled by the coil.

Re
ad

 In
puts

Execute Program

U
pdate Outputs

Diagnost
ic

s/

Communic
at

io
ns

Field_Device_Input
<I:1/0>

OTE_Output_Coil
<O:2/0>

Controlled_Output
<O:2/1>

OTE_Output_Coil
<O:2/0>

0

1

Ladder Logic Example Diagram

PLC Scan Cycle

19PLC TECHNICIAN HANDBOOK

Application control programs generally consist of 2 types of routine segments; time driven segments and event
driven segments that generally either direct a series of timed events or provide a desired response to changing
conditions in the environment. In addition to these two basic routine segment types, programs often also
include a means of repeating routine segments a desired number of times. Here we examine Time Driven routine
segments with a simple practical everyday example.

What’s an Example of a Time Driven Routine Segment?

Time driven routines employ timer instructions (TON and TOF as well as RET) to perform timed tasks. Timers
can be run concurrently to address different aspects of a single task or can be cascaded to perform a sequence
of timed events. Timers are versatile and are widely employed in PLC programming applications. An everyday
example of a timed routine segment can be seen in the control of an elevator door. The elevator door opens,
the doors remain open for a period, and then the elevator door closes. Each part of this door sequence is being
performed for a specified time duration. This is accomplished by using timer instructions in conjunction with
the appropriate outputs for door motor control. In addition to the cascaded timer type applications, another
common timer application is a reciprocal timer. In that instance 2 timers work together to provide an ON and
OFF timing duration.

The ON duration timer is used to start the OFF duration timer. The OFF duration timer is used to reset the
ON duration timer and restart the cycle. This type of application can be used for something as simple as
flashing lights.

How Do Timer Instructions Work?

The T4 Timer data file is used to store information on timer instructions being used in a given ladder logic control
application. The most common timing instruction is the “on-delay” (TON) timer.

As a quick visual review, here is the T4 timer file data structure for a single timing instruction. We recall that this
structure consists of 3 Words of 16 bits length each. This allows for the storage of timers bit status, (DN, TT, EN)
as well as the “Preset” and “Accumulated” time values.

	 Addressable Bits in Control Word (Word 0)

	 Addressable Words for Preset and Accumulated Values (Word 1, Word 2)

Bit 13 Done (DN) T4:5/13 or T4:5/DN

Bit 14 Timer Timing (TT) T4:5/14 or T4:5/TT

Bit 15 Enable (EN) T4:5/15 or T4:5/EN

Preset Value (PRE) T4:5.1 or T4:5.PRE
Accumulated Value (ACC) T4:5.2 or T4:5.ACC

TIME DRIVEN ROUTINE SEGMENTS

20PLC TECHNICIAN HANDBOOK

Time Driven routine segments

The TON delay timer instruction has 3 useful status bits, the enable (EN), timer timing (TT), and done (DN) bits.
These are the primary bits used to drive timed routine segments. Below, find the basic operation of this type of
timing instruction explained as well as how the status bits respond during operation. This TON instruction can
be used to turn on or off an output after a given period of time has expired. The instruction counts time base
intervals (0.1s) when the rung condition it is on becomes TRUE. As long as the rung condition remains true,
the timer modifies its accumulated value (ACC) time each iteration until it reaches the preset value (PRE). The
accumulated value gets reset when the rung condition goes false regardless of whether the timer has timed out
or not. The status bit behaviour is as follows:

In addition to the TON delay timer instruction, two other timer instructions are included in the basic instruction
set. The TOF delay timer, and the RET or retention timer. The retention timer functions much the same way as
the TON delay timer with a couple exceptions. The Accumulated value is not reset when the rung condition goes
false, it is kept. This allows the time interval to be interrupted, and then resumed without losing the current time
value. The other significant difference with this instruction is that it requires a reset (RES) instruction to clear its
accumulated value.

Check out the video using cascading timers to make an elevator door routine in ladder logic. This video
provides an excellent example of the instructions we have covered to date, namely, coils, contacts, and timers
and provides an illustration of cascading timers to perform a cyclic operation such as opening and closing
elevator doors.

rung conditions go falserung conditions are true

rung conditions go false

rung conditions go false or
when the done bit is set

Is Set When And Remains Set Until
One of the Following

Setting TON Status Bits

Timer Done Bit DN (bit 13)

Timer Timing Bit TT (bit 14)

Timer Enable Bit EN (bit 15)

accumulated value is equal to or
greater than the preset value

rung conditions are true and the
accumulated value is less than the
prset value

This Bit

https://youtu.be/E3kAVJbVzDE

21PLC TECHNICIAN HANDBOOK

Let’s review a simple Event Driven program segment using another staple of relay logic control systems, the
drum sequencer. This real-world control device has an associated virtual ladder logic instruction.

What’s an example of an Event Driven Routine Segment?

An event driven routine segment is one that is not synchronous meaning that there is no fixed or timed duration
associated with input or output changes. In this type of scenario, a sequencer instruction might be utilized to
walk/step through a series of actions required for a given “process” much in the way that a drum sequencer
could be employed. A drum sequencer rotates and makes/breaks connections providing a pattern of control
signals capable of driving field devices. With 500 series PLC programming, the SQO, (sequencer output)
instruction performs this same task. The user defines a data table and populates it with the patterns to perform
the given actions required for the “process”. An external stimulus or “event” can be sensed and used to step
through the data table. These external conditions are the “events” that drive the pointer through the lines of the
data table containing the desired output states. The behavior mirrors that of the real world “drum sequencer”
often employed in relay logic control and would be considered an event driven program segment when
employed in a ladder logic program. This is in contrast to a time driven program segment, as there is no specific
time interval associated with the occurrence of the stimulus or event.

How does the SQO output sequencer work?

In the ladder diagram below, we see an SQO sequencer instruction being stimulated by a single NO contact
associated with input rack location I:1/0. When this input goes high, the sequencers pointer is moved to the next
value in the data table defined for this instruction. This in effect, provides a simple example of an event driven
routine segment. The field stimulus is asynchronous and can occur at any time. This stimulus results in changes
to output conditions as the data table word that the current pointer location references is sent to the location
defined in the Destination field of this SQO instruction. (in this instance, output rack location O:2)

The pointer will move from through these locations, and when it reaches B3:4, it will wrap back to location B3:1.
The O:2 output will be passed each value stored from B3:1 to B3:4. The maximum number of values that can be
stored in any one data table is 255 as we need 1 location to be designated as the origin of the table and as we
learned in our earlier discussion of data files, the B3 file can hold 256 words.

EVENT DRIVEN PROGRAM SEGMENTS

EXAMPLE

Click on the link that
illustrates the operation
of an SQO while
explaining how Masking is
accomplished when sending
a data table to a specified
output location. Masking is
explained and the operation
of the sequencer pointer is
illustrated.

Field_Stimulus
<I:1/0>

1
SQO

Squencer Output
File
Mask
Dest
Control
Length
Position

#B3:0
ffffh
O:2

R6:0
4
0

EN

DN

SQO Squencer

https://youtu.be/glgnrBnyZ3M
https://youtu.be/glgnrBnyZ3M

22PLC TECHNICIAN HANDBOOK

We will take a brief look at how the virtual version of a counter is implemented when programming modern day
PLCs to perform industrial control applications. We will also illustrate how a technician can become familiar with
the wide variety of additional instructions used with the AB SLC 500 series of controllers. What is the difference
between the CTU and CTD counter instructions?

When programming PLCs, we encounter 2 basic types of counters, an UP counter or CTU instruction, and a
DOWN counter or CTD instruction. As you may have intuited, CTU counter instructions start at a user defined
value (stored in the ACC or accumulated field of the instruction), and count up or increment the value each time
a “false to true transition” occurs on the rung on which the instruction is located. The CTD instruction is used to
decrement a user defined (again a value stored in the ACC field for the instruction) value each time the rung on
which this instruction is located exhibits a “false to true” transition. In both instances, a field device such as a
special purpose sensor, physical wand, or a proximity detector causes an input rack location to change states.
Information pertaining to these counter instructions is stored in the C5 (counter) data file location. In addition
to the individual counter types, (up or down counter), it is possible to combine these instructions to create a
counter bi-directional counter or “counter pair”.

How do you create an UP/DOWN counter pair?

In addition to the preset and accumulated value fields previously mentioned, status bits and the counter
reference can be shared by these two counter types. The memory location structure of the C5 file provides
storage for user defined values as well as status bits.

COUNTERS

Up_Count
<I:1/1>

Down_Count
<I:1/2>

1

CTD
Count Down
Counter
Preset
Accum

C5:1
100

10

CTU
Count Up
Counter
Preset
Accum

C5:1
100

10

EN

DN

CD

DN

The C5 Data File

C5:0
C5:1
C5:2
C5:3
C5:4
C5:5
C5:6
C5:7

/CU /CD /DN /OV /UN .PRE .ACC

0 0 0 0 0 0 0
0 0 0 0 0 100 10
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Counter Ladder Logic Circuit

23PLC TECHNICIAN HANDBOOK

Counters

In the above illustration, the “Counter” field for both the CTU and CTD instructions reference the same memory
storage location, C5:1 (also shown in the figure). Each memory location in that file stores the CU (up count
enabled), CD (down count enabled), DN (done), OV (overflow), UN (underflow) status bits as well as the Preset
and Accumulated value for counters that share the C5 reference. In this example, the Preset value is set to 100.
Notice that value is shared and displayed as the Preset value for both counters. The current Accumulated value
is 10 and it is also shared and displayed in each instruction. When the I:1/1 contact closes, the CTU counter is
triggered. This will increment the Accumulated value stored in the C5:1 memory location and the modified value
will be displayed in both instructions. When the I:1/2 contact closes, the Accumulated value will be decremented
and will return to the value of 10. Each of the existing counters is capable of modifying this Accumulated value.
They also share bit status. In this way, a running count can be incremented or decremented by field events (state
transitions at the I:1 input module referenced by the contacts on the rung.

Is sharing a data file storage address among multiple instructions a common thing?

There are other instructions capable of employing a shared memory location reference. Another common
instruction that employs the use of this reference sharing technique would be the SQO sequencer output
instruction. It is possible to have several of these sequencer instructions all sharing the same R6 control data
file memory location, while referencing different Source file locations. The objective in this instance would be
the sharing of the POS (position) value. This would move the file pointer in each of the referenced source files in
step with each other. Technicians would use this facility to create a virtual Sequencer Table and send parts of the
table data to different output or instruction field locations. A sequencer table could store the output pattern for
the lights in a traffic light application.

A separate sequencer table could store the timing information for each step in the light sequence. As the pointers
move together, each output light pattern (being sent to the output locations controlling the lights) is stepped
through, the corresponding time duration for each step can be sent to the Preset field of a timer instruction.

How do you research the behavior of the wide variety of instructions available with
SLC 500 series controllers?

The basic extended instruction set is detailed in the vendors User’s Instruction Set Reference Manual. The guide
lists the available instructions, and describes the operation and data associated with each instruction. As the
instructions are too numerous to be expounded upon in this format, it is important to familiarize yourself with
this resource.

EXAMPLE

Click on the link to demonstrate the behavior of an up/down counter pair employed to keep a running
count value that can be incremented or decremented as required. The video outlines an elevator hoist
routine that uses a running count to track the elevator car location.

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1747-rm001_-en-p.pdf
https://youtu.be/4NLcOov8oLg

24PLC TECHNICIAN HANDBOOK

When we think about technologies which have revolutionized industrial automation, we often think about a
specific piece of hardware we interact with, rather than the software behind the scenes. For factories and
manufacturing plants, the Programmable Logic Controller (PLC) dramatically improves efficiency and control; yet
it’s the SCADA software which runs all the operations smoothly.

To understand the basics of SCADA systems, it’s important to know what they are, their functions and
components, and their place in modern industrial workplaces.

What is a SCADA System?

If you’ve worked in a factory, chances are you’ve heard the term SCADA. However, if you’re not familiar with
factory floors, this might be a foreign concept. SCADA systems are an industrial control system at the core
of many manufacturing plants’ daily operations. SCADA stands for Supervisory Control and Data Acquisition.
Simply put, SCADA systems gather and quickly analyze real-time data. In the manufacturing sector, they’re used
to monitor and automate the control processes of industrial automation.

The basic SCADA architecture begins with PLCs or Remote Terminal Units (RTUs). These microcomputers
receive data from the sensors and machinery within a factory or operation, then route the information to
computers running the SCADA software. The software processes, distributes, and displays information on a
Human Machine Interface (HMI) for a human operator to make decisions based on the information.

SCADA systems were first introduced to the factory floor after the implementation of industrial computers,
primarily PLCs. The term “SCADA system” was coined in the early 1970s, as the software which allowed
automated communications to transmit data from remote sites to monitoring equipment. Some of the biggest
industries that use SCADA include oil and gas, food and beverage, automotive, and chemicals. A basic SCADA
system has several key components and functions, which is what we’ll explore below.

Functions of a SCADA System

The software and hardware elements of a SCADA system work together to perform the functions which collect,
analyze and display real-time data from factory operations. Modern SCADA systems offer the ability to monitor
and control various processes from a remote location.

A SCADA system has four primary functions: data acquisition, network data communication, data presentation,
and control.

1. Data Acquisition

SCADA systems acquire data from sensors and network devices connected to PLCs. They measure parameters
such as speed, temperature, weight, flow rate, gaseous emissions and pressure. This raw data is then sent to a
PLC to process, and then on to an HMI for a human operator to analyze and make decisions as required.

SCADA SYSTEM: WHAT IS IT
AND HOW IT WORKS

Tips and Common Practices

25PLC TECHNICIAN HANDBOOK

SCADA System: What is it and How it Works

2. Network Data Communication

The use of wired or wireless communications technologies is important for SCADA systems when transmitting
data between machines and operators. These networks allow multiple systems to be controlled from a central
location.

3. Data Presentation

SCADA systems report data to either an HMI or a HCI (Human Computer Interface), where the information is
displayed to a human operator. This master station continuously monitors all sensors and alerts the operator
when there is an “alarm” or dysfunction - when a control factor is not functioning within normal operational
range.

4. Control

SCADA systems can be programmed to perform certain control decisions based on data collected from the
sensors. Control functions may include turning power on/off, adjusting temperature, decreasing or increasing
speed, and regulating a variety of industrial processes.

Components of a SCADA System

SCADA systems are composed of numerous hardware and software mechanisms working together to perform
the functions listed above. The hardware consists of data collection devices such as sensors, relays and
switches. SCADA software analyzes and translates the data which is then sent to the operators, and also has
the ability to be programmed for control and alarm functions.

Digital or analog inputs and sensors are responsible for measuring and controlling the status and parameters of
a machine. Their primary function is data acquisition, which is then sent to the PLCs or RTUs. PLCs and RTUs
are small industrial computers which collect data from the inputs and sensors and report the information in a
meaningful way. They serve as local collection points for gathering reports and also deliver commands to control
relays. Data collected from multiple PLCs is subsequently sent to a central HMI.

HMIs serve as the master and satellite computer stations which allow a human operator to analyze all the
collected data from networked devices and sensors. The information is often displayed in graphical pictures
and maps representing machines and devices, data charts, and performance reports. Based on the information,
the human operator can make informed decisions to optimize the efficiency of the production process. The
communications network is what allows data to be sent between the machines, PLCs, and operators. SCADA
systems typically use a closed LAN for local geographical areas, or WANs to connect to different regions.
Without a correctly designed communication network, a SCADA system would not be able to function.

SCADA Systems in Modern Industrial Automation

In modern industrial workplaces, PLCs are widely used as the device which communicates data from sensors
and inputs to an HMI, for operators to make decisions about the manufacturing processes. However, it’s the
SCADA software which works between all the components to keep operations running efficiently.

26PLC TECHNICIAN HANDBOOK

This article provides an introductory understanding of the “File Based Addressing” scheme used with 16-bit
(500 series) PLC’s from Allen Bradley. Although addressing schemes are proprietary in nature, Allen Bradley’s
approach can serve as a valid representation of the addressing schemes generally employed by this generation
of controller, and the principals set out in this article can be easily applied to 16-bit controllers offered by a host
of other vendor’s. PLC memory allocation consists of 2 general areas: program files, and data files. Each section
consists of 256 files, some of which are predefined, while others are flexible and can be used to suit the needs
of a given application. The part of the file based addressing scheme that will be discussed in this article, resides
within the 256 files contained in the Data Files section of PLC memory. Files 0 through 8 in the data files section
are standard and predefined as shown in the figure below. Files 9 through 255 can consist of any of the available
file types depending on the user’s needs. The figure below lists the 11 basic data file types, Output, Input,
Status, Bit, Timer, Counter, Control, Integer, Floating point, String, and ASCII. These files store data and values
pertaining to I/O, instructions, processor status, as well as variables in data tables. All these file types can be
referenced using the File Based Addressing scheme.

Memory File Organization for the File Based Addressing System

What is an address?

An “address” is essentially a means of referencing a location in memory. Addresses allow for physical I/O as well
as the data or status of instructions/elements to be accessed by the controller. These values are stored in the
Data Files portion of the PLCs memory. The Data File section of memory is organized into 11 general file types.
Each file type is denoted by a specific letter which is used at the start of all associated addressing.

What is I/O addressing?

The most familiar addresses encountered by technicians would be those addresses pertaining to physical I/O
locations. The state of physical connection points on the I/O rack will be stored in the “I” and “O” files in the
PLCs memory. The format for an I/O address will start with the file type, (I or O), followed by its slot number in
the I/O rack, It will end with a reference to the specific terminal number (0-15) on the module of interest.

An input address related to terminal connection 12 on an input module situated in slot 3 of the I/O rack would
have the address I:3/12. This address contains 3 alpha numeric characters and 2 delimiters. The address starts
with the memory file type “I” denoting its location in the input file. The next item in the address is the delimiter
“:”. This delimiter is used to separate the file type from the slot number containing the input module that is being
referenced, in this instance slot 3. After the slot number is specified, a second delimiter (a backslash), separates
the slot number from the actual terminal connection point (0-15) on the input module. The state of this terminal
connection point, (high or low in the case of discrete I/O) will be stored in the input file. A 16-bit word, stored
in the input file, is used to represent each one of the input modules present in the I/O rack. Each terminal, on a
given module, is represented by a single bit in that 16-bit word. Bits 0 through 15 in the stored word correspond
to terminals 0 through 15 on the input module. The values appearing at these terminals (high or low for discrete
modules) will be stored to the corresponding memory location in the “I” (input) File.

An output address follows the same format as an input address. It consists of 3 alpha numeric values and 2
delimiters. Data pertaining to output addresses are stored in the “O” File. A discrete output can be turned on
or off by storing a high or low value to a memory location associated with a specific terminal in a specific I/O

FILE BASED ADDRESSING TIPS

27PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

rack slot location. As an example, if you wish to turn on a device connected to terminal 7 of the output module
located in slot 2 of the I/O rack, you would store a 1 value to the address O:2/7. Once again, the “O” (output) File
is organized into a data table of 16-bit words. Each terminal on the output module corresponds to a single bit
in a given word. Each output module in the rack will correspond to a separate word in the data table contained
in the file. Module terminals will present the state (high or low for discrete I/O) that has been stored to the
corresponding “O” (output) File in memory.

In addition to addresses referencing physical terminals in the I/O rack, it is common to reference “Virtual
Outputs” using this addressing scheme. A virtual output is an output that does not physically exist in the I/O
rack. For instance, if 8 slots in the rack are populated with modules of various types, a virtual output can be
referenced by specifying a slot number that is not present or in use. The address O:10/0 is an example. Since
there is no slot 10 in the rack, there is no module associated with this address. This does not mean, however,
that there is not a word “10” in the data table in the “O” (output) File. Virtual outputs can be used as internal
memory locations to store status or data without referencing an actual terminal on an output module.

What other things can be referenced by this addressing scheme?

In addition to I/O addressing, data tables containing variables/values can also be referenced using addresses.
There are 3 types of values that can be stored in the file based addressing system, Integers, floating point
values, and single bit values. These values are stored in the “N” (integer) File, “F” (floating point) File and the “B”
(binary/bit) File types. Each of these files are organized into a table of “words”. Each word and/or bit in these
tables can be referenced individually using this addressing scheme. We have obtained a solid basic knowledge
of the general file organization that should serve to assist in understanding the File Based Addressing system as
we move forward.

Now let’s examine the addressing format for these 3 files, as well as examine some specialty files that store
custom data structures used to hold information pertaining to timers, counters, and control elements. These
addresses as well as the structure of the associated timer (T), counter (C) and control (R) files are a bit more
involved than the straightforward I/O addressing we have examined so far.

Here is a quick review of the “I” (input) and “O” (output) addressing scheme.

Input and Output Addressing Format:

Input File Address	 I : e . s / b

Output File Address	 O : e . s / b

Where:

I or O indicates the input or output file is to be used (file 0 or file 1 of the 256 available data
files)

: is the element delimiter
e is the slot number of the I/O module
. is the word delimiter

s is the word number (only used when more than 16 inputs or outputs contained in a
single slot)

/ is the bit delimiter

b is the terminal number on the I/O module (0-15)

28PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

In addition to addressing physical I/O locations, virtual outputs can be addressed by specifying a slot number
that is beyond the range of the number of slots that have defined modules located in the rack. As an example,
the address O:10/0 would denote a virtual output whose data is stored in the 11th element in the output data
file. This is a virtual output if no output module was defined to exist in slot 10 of the I/O rack.

How do you store/read variables using this addressing scheme?

In addition to I/O addressing, data files containing variables/values are also referenced using file-based
addressing. The B3 bit (or binary) file is used to store single bit status values (0 or 1). The N7 integer file is used
to store integer values, and the F8 float file is used to store floating point values. Variables can be stored to or
read from these data file locations for use in PLC programs. Each of these 3 default file types (B3, N7, and F8)
can employ files 9 through 255 should additional storage of a given type be required. For example, you can use
B22, N37, and F145 as user specified data files should your application demand additional storage for these
variable types. Remember, only the first 9 files of the available 256 data files are pre-defined and considered to
be default. The remaining files can be specified to be any of the available file types.

The B3 Bit File:

The B3 file is organised into a table containing 256 elements, each of which is 16 bits in length giving the user
the ability to reference a total of 4096 bits per data file of the “B” type. Each bit in an element (16-bit word) is
accessible using the file based addressing scheme. This file is ideal for setting and monitoring user defined
status flags when desired application conditions exist. There are two ways in which the status of a given bit in
this file can be specified. You can reference the element (word 0 - 255) in the table and then specify the bit within
that element (bit 0 – 15). Alternately, you can also leave the element designation out of the address, and directly
specify the bit number (bit 0 – 4096) in the data file table.

B3 Bit File Addressing Format:

Using Elements	 B3 : e / b

Where:

Using only bits	 B3 / b

Where:

B3 indicates the bit file is to be used (B3 is the default, B9 to B255 can be used if
additional storage is required)

: is the element delimiter
e is the element number (16 bit word). The value can range from 0 to 255

/ is the bit delimiter

b is the bit number within the element specified. The value can range from 0-15.

B3 indicates the bit file is to be used (B3 is the default, B9 to B255 can be used if
additional storage is required)

/ is the bit delimiter
b is the bit number within the entire data file table (can range from 0-4096)

29PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

In summary, a status bit in the B3 data file table can be referenced in either one of two ways. If we want to
address bit 3 in the 2nd element in the B3 data file, we can specify this memory location as B3:1/3 or we can
alternately specify this memory location as B3/19. For ease of use, it is generally recommended that you use the
element designation format as it allows for an additional layer of categorization when organizing status flag bits.

The N7 Integer File:

The N7 integer file is also organized into a table of 256 elements, each of 16 bit length. This file table allows for
specifying elements as well as bits within an element, however, values stored to or read from this data file are
typically values as opposed to single bit states. The addressing format is similar to the one used with the B3 file
addressing that includes the element number.

N7 Integer File Addressing Format:

Integer File Addressing	 N7 : e / b

Where:

As an example, to store or read a value from the 4th element in this data file table, you would use the address
N7:3 to identify the specific memory location for that integer value. Again, in general usage, you would not often
have the need to specify a particular bit within the stored integer value.

The F8 Float File:

The F8 file is used to store or read floating point variables/values in memory. This file organization differs slightly
from the ones described above for the B3 and N7 data files. Each file of this type contains 256 elements,
however, in this case, each element is comprised of 2 words each being 16 bits in length. This means that
consequently, this file type can be 2 times the size of a “B” or “N” type file. Another difference with this file
type is that individual bits within elements cannot be individually referenced. Only elements inside this file type
can be specified. This type of data file is ideal for storing and retrieving values used with math instructions and
calculations. The basic format for the file based addressing scheme associated with this file type is similar to the
ones previously outlined with the above noted exceptions.

F8 Float File Addressing Format:

Float File Addressing	 F8 : e

Where:

N7 indicates the integer file is to be used (N7 is the default, N9 to N255 can be used if
additional storage is required)

: is the element delimiter
e is the element number (16 bit word). The value can range from 0 to 255

/ is the bit delimiter

b is the bit number within the entire data file table (can range from 0-15)

F8 indicates the integer file is to be used (N7 is the default, N9 to N255 can be used if
additional storage is required)

: is the element delimiter

e is the element number. Each element consists of two 16 bit words. The value can
range from 0 to 255

30PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

Floating point information can only be used by instructions that accept the REAL data type. Not all basic
instructions can be used with floating point values stored in this data file table.

How do you reference information contained in data files specifically intended for
use with instruction set items?

So far, we have covered addressing schemes that deal with data files that store information regarding physical
I/O as well as variables that are used with PLC program. In addition to these types of data files, we will now take
a look at some of the data file types used with the instructions that are available in the instruction set for the 500
series of AB controllers. There are 3 data file types which are intended for use with specific instructions. The
T4 data file is used for storing timer variables and status bits. The C5 data file is used to store values relating
to counter variables and status bits, and lastly the R6 data file is used to store information and status bits for
“control items. (this last category would include sequencers, the FIFO and LIFO data stack instructions, as well
as bit shift instructions among others. Each of these 3 data file types consists of 256 elements, each of which is
comprised of three 16 bit words making these the largest of the data file types. We will move on now, to take a
brief look at the addressing format for each of these data file types.

The T4 Timer File

This file consists of 256 elements used to track the preset and accumulated values as well as the state of
various status bits associated with timer operation. Each element in this file contains three 16-bit words. Word 0
in an element is referred to as the control word. It contains the status bits associated with the timer instruction
(i.e. EN, TT, DN bits). Word 1 in an element is used to store the desired PRESET value for the timer. The last
word in each element, Word 2 contains the ACCUMULATED value. (Note, the timers “time base” value is not
addressable and cannot be specified using the file based addressing scheme).

T4 Timer File Addressing Format:

Timer Addressing	 T4 : e .s / b

Where:

Addressable Bits in the Control Word (word 0) of a Timing Element:

When addressing word 0, you can leave out the word designation and simply reference the bit number for the
desired status bit. It is also significant to note that you can use letters to denote specific bits in the control word.
(ie EN, TT, and DN. These can be used to replace the numeric values denoting specific bits in the address. This

T4 indicates the timer file is to be used (T4 is the default, T9 to T255 can be used if
required)

: is the element delimiter
e is the element number (each element contains three 16 bit words)

. is the word delimiter

s is the word number (word 0 is the control word, word 1 is the preset value, word 2 is
the accumulated value)

/ is the bit delimiter
b is the bit number in the specified word (0-15)

31PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

means there are two ways to reference items in the control word (word 0) of a timer element. In the examples
and explanation below, we are assuming that we are addressing the 6th element in the timer data file. (Timer
T4:5 would be the general reference for this timer in a program)

Addressable Words in a Timing Element (Word 1 and Word 2)

Word 1 of a timer element holds the preset value. This value can be referenced in one of two ways.
You can include the word number, 1, or you can use the letters PRE to denote the storage location of the
preset value, both of which are interpreted as equivalent references to word 1 of the timer element. This
same approach can be used to designate word 2 in the element. This word contains the accumulated value.
You can specify word 2, or you can use the letters ACC to denote the location of the accumulated value in
the element.

In either instance of the above, (for both PRE and ACC addresses) you can add a designation specifying the
particular bit inside either of these words in the element. For example, if we want to reference the least
significant bit (bit 0) of the accumulated value of the 6th timer element in the table, we can do so as follows:

In summary, the status as well as preset and accumulated values can all be referenced down to the single
bit level. The timer elements each contain three 16-bit words that are addressable using the file based
addressing scheme. Individual bits inside each of these words can be referenced as well as then entire word
in the case of the Preset and Accumulated values (word 1 and 2 in the element). In addition, there are several
standard letter combinations that can be used in place of specific bit or word numbers. These letters provide
easily identifiable references, and it is recommended that they be used in place of the more obscure number
only approach.

The C5 Counter File

This file consists of 256 elements used to track the preset and accumulated values as well as the state of
various status bits associated with counter operation. The address formatting for this data file is very similar
to that employed for timers. The first word in the element, word 0 is the control word that contains the status
bits associated with the counter function. The second word, word 1 is used to hold the preset value for the
counter, and the last word in the element, word 2, is used to hold the accumulated value. As with the timer
addressing scheme, certain letters can be used in place of bit or word numbers. The counter control word has
several more addressable bits than the timer control word.

Bit 13 Done (DN) T4:5/13 or T4:5/DN

Bit 14 Timer Timing (TT) T4:5/14 or T4:5/TT

Bit 15 Enable (EN) T4:5/15 or T4:5/EN

Preset Value (PRE) T4:5.1 or T4:5.PRE
Accumulated Value (ACC) T4:5.2 or T4:5.ACC

Accumulated Value, Bit 0 T4:5.2/0 or T4:5.ACC/0

32PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

C5 Counter File Addressing Format:

Counter Addressing	 C5 : e .s / b

Where:

Addressable Bits in the Control Word (Word 0) of a Counter Element

As with timer data files, counter data files use word 0 as the control word which contains the counter status bits.
Here again, because we are addressing the first word in the element, the word designation part of the address
can be omitted as it is not required. In addition, as with the timer data file, the counter data file addressing
scheme recognizes specific letters that are used to denote bit numbers for particular status bits. In the examples
and explanations below, we will be assuming that we are addressing the 3rd element (C5:2 would be the
reference to this counter in a program) for the purpose of illustration.

Addressable Words in Counter Element (Word 1 and Word 2)

Word 1 of a counter element holds the preset value. The same approach (using PRE instead of the word number)
can be used with counters as was used with timers. This also applies to the use of ACC to denote word 2 of a
counter element.

In either instance of the above, (for both PRE and ACC addresses) you can add a designation specifying
the particular bit inside either of these words in the element. For example, if we want to reference the least
significant bit (bit 0) of the accumulated value of the 3rd counter element in the table, we can do so as follows:

C5 indicates the counter file is to be used (C5 is the default counter data file, C9 to C255
can be used if required)

: is the element delimiter
e is the element number (each element contains three 16 bit words)

. is the word delimiter

s is the word number (word 0 is the control word, word 1 is the preset value, word 2 is
the accumulated value)

/ is the bit delimiter
b is the bit number in the specified word (0-15)

Bit 11 Underflow (UN) C5:2/11 or C5:2/UN
Bit 12 Overflow (OV) C5:2/12 or C5:2/OV
Bit 13 Done (DN) C5:2/13 or C5:2/DN
Bit 14 Count Down Enable (CD) C5:2/14 or C5:2/CD
Bit 15 Count Up Enable (CU) C5:2/15 or C5:2/CU

Preset Value (PRE) C5:2.1 or C5:2.PRE
Accumulated Value (ACC) C5:2.2 or C5:2.ACC

33PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

In summary, the counter data file type contains 256 elements, each of which is made up of three 16-bit words.

These elements and the subsequent addressing scheme follow the same format laid out for the timer (T4) data

file type. The only significant difference pertains to the control word bits that are addressable, and the letters

used to denote them.

The R6 Control Data File

This file consists of 256 elements used to track the status, length of a bit array or file, and position pointer within

an array information relating to instructions that employ this file type. Unlike the T4 and C5 data file types,

this file type is used with several types of instructions. For this reason, there are many more status bits that

are addressable in the control word (word 0) of each element in this data file. Various instructions use specific

combinations of these control status bits. Not all status bits in the control word are used in each instruction type

that employs this file to store information pertaining to the instruction’s operation.

R6 Control Data File Addressing Format:

Control Data Addressing	 R6: e .s / b

Where:

Addressable Bits in the Control Word (Word 0) of a Control Data Element

As with timer and counter data files, control data files use word 0 as the control word which contains the control

data status bits. As with our other multi word elements, because we are addressing the first word in the element

for the status bits, the word designation part of the address can be omitted as it is not required. In addition,

as with the timer and counter data file, the control data file addressing scheme recognizes specific letters that

are used to denote bit numbers for particular status bits. In the examples and explanations below, we will be

assuming that we are addressing the 1st element for the purpose of illustration. (R6:0 would be the reference

used with an instruction employing the Control Data file type)

Accumulated Value, Bit 0 C5:2.2/0 or C5:2.ACC/0

R6 indicates the control file is to be used (R6 is the default counter data file, R9 to R255
can be used if required)

: is the element delimiter
e is the element number (each element contains three 16 bit words)

. is the word delimiter

s is the word number (word 0 is the control word, word 1 is the length value, word 2 is
the accumulated value)

/ is the bit delimiter
b is the bit number in the specified word (0-15)

34PLC TECHNICIAN HANDBOOK

File Based Addressing Tips

Addressable Words in Control Data Elements (Word 1 and Word 2)

Word 1 of a control data element holds the length of the bit array or file. Word 2 holds the position pointer
location within that array. As with our previous multi word elements, we can reference these locations using the
word number, (1 or 2) and also using LEN for length, and POS for position.

Once again, in either instance of the above, (for both LEN and POS addresses) you can add a designation
specifying the particular bit inside either of these words in the element. For example, if we want to reference the
least significant bit (bit 0) of the length value or the position value of the 1st control data element in the table, we
can do so as follows:

To summarize, Control Data files are used with several instructions. This data file type uses elements consisting
of three 16-bit words. As with the timer and counter data files, the first word, word 0, is used to store status bits
used for the specific instructions that are employing the data file

Wrapping Up the Basics of File Based Addressing

The file based addressing scheme can be used to store, reference, and retrieve information pertaining to
physical I/O locations, variables and values, as well as parameters relating to specific instruction set items
used in PLC programs. The data file section of memory consists of 256 files. The first 9 files are of pre-
determined types. The balance of the data files available (files 9 through 255) can be defined and used as any
of the allowable data file types. Each data file type contains 256 elements that can be addressed individually.
Depending on the data file type, and element can consist of 1, 2, or 3 distinct 16-bit words. In most cases, each
word, as well as each bit in the word can be selectively addressed depending on the file type, and/or instruction
it is being used with. There is a general consistency employed throughout the various data file types used by
the file based addressing scheme and most aspects are common among the various data file types. We have
examined 8 of the 9 default data files provided with the 500 series AB controllers. The data files that employ
three-word elements all allow for pneumonic referencing in lui of specifying bit or word numbers. The letters
used for these are specific to the element and function they are being used with.

Length Value (LEN) R6:0.1 or R6:0.LEN
Position Value (POS) R6:0.2 or R6:0.POS

Length Value, Bit 0 R6:0.1/0 or R6:0.LEN/0
Position Value, Bit 0 R6:0.2/0 or R6:0.POS/0

Bit 8 Found (FD) R6:0/8 or R6:0/FD
Bit 9 Inhibit (IN) R6:0/9 or R6:0/IN
Bit 10 Unload (UL) R6:0/10 or R6:0/UL
Bit 11 Error (ER) R6:0/11 or R6:0/ER
Bit 12 Stack Empty (EM) R6:0/12 or R6:0/EM
Bit 13 Done (DN) R6:0/13 or R6:0/DN
Bit 14 Unload Enable (EU) R6:0/14 or R6:0/EU
Bit 15 Enable (EN) R6:0/15 or R6:0/EN

35PLC TECHNICIAN HANDBOOK

Let’s examine scan time and its impact on everyday PLC applications as well as examine how it can be reduced.
Scan time is an important metric to be considered in many high-speed PLC applications. The time it takes to
perform a single scan cycle can have significant impact on the input stimulus and/or output control signals
present or required for high-speed applications. Specialty I/O modules are often employed in these situations
and offer significant advantages.

That said, it is important to note that scan cycle time can also be of significance for general applications as well.
Although they may not have the extreme constraints and dependencies of high-speed applications, general
applications, such as a simple multiplexing program segment, can have practical limitations that can relate
directly to scan time. The impact scan time has on the operation of timers can be significant. It is generally
accepted that an understanding of the impact of scan time along with some basic knowledge of how it can be
reduced is important when learning how to program a PLC with ladder logic.

We will examine a simple example of each of the following 5 tips over the next two blogs:

1.	 Place instructions/conditions that are most likely to be false at the start of a rung to reduce the number
of instructions seen during the scan.

2.	 Avoid duplicating unique tag/instruction combinations when creating ladder logic programs whenever
possible. A change in architecture can often reduce the total number of instructions used in a program
reducing memory usage as well as scan time.

3.	 Program flow control can be key to significant reductions in scan time. Use the JMP and LBL
instructions to reduce the active segments of a running program.

4.	 Compartmentalizing tasks (making modular processes) and organizing them can have significant
impact on scan time. Passing variables can allow for program segments (subroutines) to be used in
multiple instances.

5.	 Avoid floating point arithmetic and try to use integers wherever possible. If you need better than
integer precision, consider multiplying all your floats by 10, 100, or 1000 to get integers.

A Basic Example of Each Scan Cycle Time Reduction Tip:

Let’s review a simple example of each the first two tips.

1. The instruction most likely to be false should be at the start of a rung.

When possible, arranging instructions from left to right with the likelihood of them being false determining their
position is a good practice that should be adopted. Consider the simple motor seal-in rung below:

5 TIPS ON HOW TO REDUCE SCAN TIME
USING LADDER LOGIC

36PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

The “Stop PB” pushbutton field device is a normally closed momentary contact switch. When the application is
running, the normally open contact associated with it closes due to the state of the pushbutton in the field. For
this reason, the branch part of the seal in, should appear to the left of the “Stop PB” pushbutton contact on the
rung. The Stop PB contact will be closed most of the time during program execution. It should not be the first
instruction scanned on the rung. This small effect can have a significant impact on scan cycle time cumulatively.

2. Avoiding the duplication of unique tag/instruction combinations.

Consider this program segment that is used to provide a single start/stop station using a momentary contact
pushbutton.

The program segment above is optimized and does not use any unique tag/instruction combinations more than
once. If the application called for the use of a second station, one could copy this structure and modify the tags
to create the program segment shown below:

Close_PB
<Local:1:I.Data.1>

Motor_Down
<Local:2:O.Data.1>

Stop_PB
<Local:1:I.Data.2>

Motor_Down
<Local:2:O.Data.1>

0

Station_1_PB
<Local:3:I.Data.0>

Station_1_PB
<Local:3:I.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Latch_Bit_1

Latch_Bit_1

Latch_Bit_1

Latch_Bit_1

0

1

L

U

L

U

37PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

Although this was an easy way to accomplish our objective, we have introduced a duplication of 4 tag/
instruction combinations. The XIO, XIC, OTL and OTU instructions are appearing twice with the “Pilot_Light”
alias tag in the version above. The impact of this redundancy would increase for each additional station that may
be required. An alternate topology can be the way to resolve this redundancy issue.

The program segment shown below will function identically to the version having 2 stop/start stations we
examined previously.

Station_1_PB
<Local:3:I.Data.0>

Station_1_PB
<Local:3:I.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Latch_Bit_1

Latch_Bit_1

Latch_Bit_1

Latch_Bit_1

0

1

2

3

L

U

L

U

Station_2_PB
<Local:3:I.Data.1>

Station_2_PB
<Local:3:I.Data.1>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Latch_Bit_2

Latch_Bit_2

Latch_Bit_2

Latch_Bit_2

L

U

L

U

38PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

This version of the program segment uses 4 instructions less than the previous version. It contains no duplicate
tag/instruction combinations and this new topology is easy to expand upon when additional stations may be
required. It was not immediately apparent that there was another way to organize the required logic for this
example, but time should be taken for the attempt as it is always worth the effort when successful and can have
a significant impact on scan cycle time as well as memory usage.

3. Use the JMP and LBL instructions to reduce the volume of program code being
executed during each scan cycle.

Program flow is an area in which significant reduction in scan time is possible.

In the example below, the motor 2 and motor 3 rungs are skipped over when the “Enable_Jump” contact
is closed on rung 1. At that time, the JMP instruction is encountered and program execution jumps to the

Station_1_PB
<Local:3:I.Data.0>

Station_2_PB
<Local:3:I.Data.1>

Station_1_PB
<Local:3:I.Data.0>

Station_2_PB
<Local:3:I.Data.1>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Pilot_Light
<Local:4:O.Data.0>

Latch_Bit_1

Latch_Bit_1

Latch_Bit_2

Latch_Bit_1

Latch_Bit_1

0

1

L

U

L

U

Latch_Bit_2

Latch_Bit_2

Latch_Bit_2

L

U

39PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

“Label_1” LBL instruction location on rung 4 skipping over rungs 2 and 3. This concept can be used to jump
over large portions of a program that are not being used at any given time in a production cycle. This has the
potential to greatly reduce the number of rungs being scanned and subsequently can significantly reduce an
applications scan cycle time.

The ability to skip over rungs is not the only way that the JMP and LBL instructions can be utilized to reduce
scan cycle time. Suppose you are monitoring a series of inputs for specific changes in state, and that the nature
of these state changes will determine what series of actions will consequently occur. In a situation such as this,
creating a program loop to execute only the rungs needed to monitor the inputs will ensure that scan cycle time
is not a deterrent to providing rapid responses to any input state changes.

Motor_1_Stop
<Local:1:I.Data.0>

Motor_2_Run
<Local:1:I.Data.2>

Motor_3_Run
<Local:1:I.Data.3>

Motor_4_Run
<Local:1:I.Data.4>

Enable_Jump
<Local:1:I.Data.6>

Moror_1_Start
<Local:4:I.Data.1>

Motor_1
<Local:2:O.Data.1>

Motor_2
<Local:2:O.Data.2>

Motor_3
<Local:2:O.Data.3>

Motor_4
<Local:2:O.Data.4>

Motor_5
<Local:2:O.Data.5>

Motor_1
<Local:2:O.Data.1>

Label_1

Label_1

LBL

0

1

2

3

4

5

JMP

Station_2_PB
<Local:3:I.Data.1>

40PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

This is often accomplished by creating a “zone” that is defined by the location of the JMP and LBL instructions
in your program. This zone is scanned from top to bottom and then program execution loops back to the start
of the defined zone again. This will continue until an exit condition allows program execution to resume outside
the loop. It is obvious that these techniques can have significant impact on the scan cycle and that program flow
management using the JMP and LBL instructions can be a powerful tool providing a degree of control over scan
cycle times.

4. Compartmentalizing tasks using subroutines to allow for program segments to
be used in multiple instances.

In keeping with the concept that scanning less rungs will reduce overall scan cycle time, the use of the JSR,
SBR and RET program flow instructions and their impact on scan cycle times always merits consideration.
Creating reusable atomic program segments for functions that get repeated at different times in a process allows
these program segments to get called only as needed and will significantly reduce the number of rungs being
scanned as this avoids needless duplication. As a simple example, consider a routine that requires the average

Scan

Continue Scan

Not
Scanned

Not
Scanned

Jump

Label

Scanned
Not

Scanned

Label

Jump

Scan

Continue Scan

Not
Scanned

Not
Scanned

Jump

Label

Scanned
Not

Scanned

Label

Jump

Skipping over sections

Creating program loops

41PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

of two values in several calculations being made. Creating a subroutine that can be called in more than one

circumstance avoids the need to duplicate any of the instructions needed to find an average value. Values are

passed into the routine and a result is passed out as shown below.

The JMP and LBL instructions allow you to focus on a segment or skip over segments. The JSR and RET

subroutine instructions allow program segments to be used multiple times instead of creating multiple instances

of them. The program flow instructions are great tools for managing scan cycle times.

Calculate_Average
<Local:1:I.Data.0>

0

0

JSR
Jump To Subroutine
Routine Name
Input Par
Input Par
Return Par

GetAverage
Variable_1
Variable_2

Average

JSR
Jump To Subroutine
Routine Name
Input Par
Input Par
Return Par

GetAverage
Variable_1
Variable_2

Average

DIV
Divide
Source A

Source B

Dest

Sub_Sum
100

2

SubResult
50

SBR
Subroutine
Input Par
Input Par

Sub_Value_1
Sub_Value_2

RET
Return from Subroutine
Return Par Sub_Result

Mainline Program Subroutine Call and Subroutine

42PLC TECHNICIAN HANDBOOK

5 Tips on How to Reduce Scan Time Using Ladder Logic

5. Avoid floating point arithmetic and try to use integers wherever possible.

This general practice shortens scan cycle time as the instructions that use the REAL data type take up more
memory, use more resources to function and require more cycles than the INT data type variables. As an
example, suppose we have an analog input signal ranging from 0 to 10 volts and the sensor is providing 2
decimal places of accuracy. A value such as 8.34 V would be an example of the type of input coming to the
analog input channel. Multiplying the value by 100 will remove the decimal portion of the value and create a
whole number that can be used with the INT data type. It can be said that in general it is beneficial to work with
INT or DINT data types when doing math operations by scaling values at the input of output point of a process.
An analog output control signal should be generated using INT or DINT data types and converted to a REAL
value, within output range, just prior to being sent out when at all possible.

This program segment takes an analog input value between 0.00 and 10.00 and converts it to a whole number
value ranging from 0 to 100. This scaled value can be operated on using DINT data type variables at that point.
The value is being scaled back to the 0 to 10 range before being sent to an output module location.

Scan cycle time is an application parameter that can have varying significance to a process. In instances where
scan time is critical, knowing ways to reduce its impact on an application can be extremely helpful. Following
these 5 tips on reducing scan cycle time and they will help you to manage this parameter in cases where it may
be critical to normal operation.

0

1

MUL
Multiply
Source A

Source B

Dest

Local:7:I.Ch-Data
8.6
100

Scaled_Input_Value
860

DIV
Divide
Source A

Source B

Dest

Scaled_Input_Value
860
100

Local:8:O.Ch0Data
8.6

Local:8:O.Ch0Data

Local:7:I.Ch-Data

008.6 V

008.6 V

PROGRAM
EXAMPLES2

44PROGRAM EXAMPLES

PLC timer instructions emulate the behaviour of “Time Delay Relays” and their associated contacts. The two
basic types of timer instructions used to achieve the desired behaviours are the TON on delay timer and the TOF
off delay timer.

All timer instructions share a common structure and use the “TIMER” datatype. The datatype has storage
for timer “Preset” and “Accumulated” values as well as the three significant status bits used with this kind
of instruction. (EN enable, TT timer timing, and DN done). The behaviour of these status bits is key to
understanding how the behaviour of time delay relays has been replicated using these simple instructions with
normally open and normally closed contacts. We can begin with a quick review of the operation of the TON and
TOF delay timer instructions with respect to their status bit behaviour.

Timing Diagrams and general behaviour of the TON vs TOF timer instructions

Here we have the timing diagram associated with a TON delay timer instruction. When the timer rung goes high
in the figure above, the TON timers EN bit goes high. It will remain high as long as the rung condition is true.
In addition to the EN bit going high, the TT, (timer timing) bit also goes high and the timer begins timing out its
“preset” time duration (10 seconds in the example graph above). The TT bit remains high until the specified
duration times out at which point the TT bit goes low and the DN (done) bit goes high. The DN bit will remain in
this state until the rung condition for the timer transitions back to the false (low) state.

Below we have a similar timing diagram, this time, it illustrates the behaviour of the three significant status bits
with the TOF delay timer instruction.

Timer Rung:

Enable:

Timer Timing:

Done:

10 seconds

PLC TIMER INSTRUCTIONS - THE FOUR TYPES
OF TIMED RELAYS THEY EMULATE

TON On Delay Timer

45PROGRAM EXAMPLES

PLC Timer Instructions - the four types of timed relays they emulate

The EN (enable) bit for the TOF delay timer instruction behaves exactly like that of its counterpart. When the
timer rung goes high, the EN bit goes high and remains high as long as the rung remains true (high). The DN bit
is also enabled when the timing rung goes high. This is distinctly different behaviour than that of the TON
version. When the timer rung transitions from high to low, (true to false) the TT bit goes high, and the timer
begins timing out its preset time duration (10 seconds in the above example). The DN bit remains high during
this period. When the specified period times out, the TT bit goes low, and the DN bit also goes low returning the
timer status bits to their rest state.

Now that we have reviewed the basic operation of the status bits and the TON and TOF timing diagrams, lets
take a look at how they are employed to replace timed relay contacts used with older hardwired control systems.

Listed below are the four timed relay contact behaviours performed by these two timer types. The timer type
used to perform each of these functions is also provided:

Use the TON on delay timer done (DN) status bit to reproduce the behaviour of:

a)	 NOTC - Normally Open Timed Closed Time Delay Relay Contacts

b)	 NCTO - Normally Closed Timed Open Time Delay Relay Contacts

Use the TOF off delay timer done (DN) status bit to reproduce the behaviour of:

c)	 NOTO Normally Open Timed Open Time Delay Relay Contacts

d)	 NCTC Normally Closed Timed Closed Time Delay Relay Contacts

Timer Rung:

Enable:

Timer Timing:

Done:

10 seconds

TOF Off Delay Timer

46PROGRAM EXAMPLES

PLC Timer Instructions - the four types of timed relays they emulate

NOTC and NCTO timed relay behaviour using the TON delay timer:

The above figure is a ladder logic program that illustrates the use of the TON delay timer to provide NOTC
and NCTO time delay relay contact behaviour. The two outputs in the program segment will behave as if time
delay relays are being used to enable them. Although we are not discussing the value fields used with these
instructions in this article, it should be noted that for a TON on delay timer instruction, the accumulated value is
reset to zero if the timer rung transitions to false at any time. The preset value remains unchanged.

0

1

2

TON
Timer On Delay
Timer
Preset
Accum

TON_Timer
10000

0

EN

DN

NOTC_Pilot_Light
<Local:2:O.Data.0>

NCTO_Pilot_Light
<Local:2:O.Data.1>

Toggle_Switch
<Local:1:I.Data.0>

TON_Timer.DN

TON_Timer.DN

Slot 1
Toggle_Switch00

01

02

03

NOTC_Pilot_Light

NCTO_Pilot_Light

Slot 2
00

01

02

03

47PROGRAM EXAMPLES

PLC Timer Instructions - the four types of timed relays they emulate

NOTO and NCTC timed relay behaviour using the TOF delay timer:

The TOF timer instruction is used to emulate the behaviour of the NOTO and NCTC type of timed relays. Initially,
the output on rung 1 is low and the output on rung 2 is high. (Rung 1 Normally Open, Rung 2 Normally Closed).
When the timer rung goes high, rung 1 goes high and rung two goes low. When the timer times out, the output
on rung 1 returns to its at rest low state for a TO or “timed open” finish, and the output on rung 2 goes back to
its initial high state providing the TC or “timed closed” portion of the behaviour.

While the behaviour of the TON delay timer instruction illustrated in the previous section is somewhat intuitive,
the TOF timer is often the source of confusion when considering the NOTO and NCTC behaviours that this type
of timer instruction emulates.

0

1

2

TOF
Timer Off Delay
Timer
Preset
Accum

TOF_Timer
10000

0

NOTO_Pilot_Light

NCTC_Pilot_Light

EN

DN

NOTO_Pilot_Light
<Local:2:O.Data.0>

NCTC_Pilot_Light
<Local:2:O.Data.1>

Toggle_Switch
<Local:1:I.Data.0>

TOF_Timer.DN

TOF_Timer.DN

Slot 1
Toggle_Switch00

01

02

03

Slot 2
00

01

02

03

48PROGRAM EXAMPLES

PLC Timer Instructions - the four types of timed relays they emulate

The Retentive Timer Instruction:

The TON delay timer instruction has a RETENTIVE variation. This timer instruction is refered to as a “Retentive
Timer” instruction. It has a couple of special features that differentiate it from a standard TON delay time,
however, its general operation and timing diagram matches that of a standard TON delay timer instruction. The
simple program segment below would be used to illustrate the behaviour of this timer with respect to its status
bits and the TON delay behaviour would be seen.

In the figure above, the toggle switch can be used to start and stop the timer. With a retentive timer, the
accumulated value is kept when the timer rung transitions to false. The value will remain there until the timer
is reset using the RES (reset) instruction as shown on rung 2 above. The general behaviour of the RTO timer is
that of a TON delay timer. In addition to the different ACC value behaviour, the DN status bit for the RTO timer
will remain set if it times out even if the timer rung transitions from true to false unlike that of the TON time
which goes low immediately. The DN status bit will remain set until the RES instruction resets it along with the
accumulated value.

Reset_Pushbutton
<Local:1:I.Data.1> RTO_Timer

0

1

2

RTO
Retentive Timer On
Timer
Preset
Accum

RTO_Timer
10000

0

EN

RES

DN

EN_Pilot_Light
<Local:2:O.Data.0>

TT_Pilot_Light
<Local:2:O.Data.1>

DN_Pilot_Light
<Local:2:O.Data.2>

RTO_Timer.EN

RTO_Timer.TT

RTO_Timer.DN

Field_Device_Input
<I:1/0>

Slot 1
Toggle_Switch

Reset_Pushbutton

00

01

02

03

Slot 2
00

01

02

03

EN_Pilot_Light

TT_Pilot_Light

DN_Pilot_Light

49PROGRAM EXAMPLES

DECISION MAKING - LADDER LOGIC EQUIVALENT
RUNGS FOR THREE INPUT LOGIC GATES

Boolean logic gates are often used in decision making applications. In this article we will go over the rung
configurations as well as the truth tables for the major logic gates used in decision making circuits/applications.

We will begin with the SINGLE INPUT buffer and inverter gates along with their truth tables. A truth table lists all
possible input combinations with their corresponding output condition.

Buffer And Inverter Behaviour

In the figure above, rung 0 provides buffer logic. This is accomplished using an NO (Normally Open) contact with
the normally open switch (field device). The inverter is located on Rung 1 and uses the NC (Normally Closed)
contact with the normally open switch in the field.

0

1

X_Output

Y_Output

X_Output
<Local:2:O.Data.0>

Y_Output
<Local:2:O.Data.1>

A_Input

B_Input

0 0 0 1

1 1 1 0

InverterBuffer

Input Output Input Output
A X B Y

InverterBuffer

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

Slot 1
00

01

02

03

Slot 2
00

01

02

03

50PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

AND and NAND Gate Behaviour

Here we have the 3 INPUT AND as well as the NAND logic gates along with their corresponding truth table. Each
input condition is presented on the input switches and the output state is recorded in the truth table. In this way,
the complete behaviour of these two decision making rungs can be easily illustrated and conveyed.

AND

NAND

A_Input

B_Input

C_Input

Outputs

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

Inputs
A B C AND NAND

NAND

AND

0

1

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

AND
<Local:2:O.Data.0>

NAND
<Local:2:O.Data.1>

Slot 1
00

01

02

03

Slot 2
00

01

02

03

51PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

OR and NOR Gate Behaviour

Rung 0 in the above figure provides the 3 INPUT NOR logic function. The NOR output will go LOW if any one of
the 3 input switches are closed. Effectively, neither Input A, NOR Input B, NOR Input C can be closed if you want
the output to be HIGH.

Outputs

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 1 0

Inputs
A B C OR NOR

NOR

OR

A_Input

B_Input

C_Input

Slot 1
00

01

02

03

Slot 2
00

01

02

03

OR

NOR

0

1

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

NOR
<Local:2:O.Data.3>

OR
<Local:2:O.Data.2>

52PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

XOR and XNOR Gate Behaviour

Rung 0 in the above figure provides a variation on the basic OR function. The XOR (exclusive OR) logic function Is
based on exclusivity. The output of an XOR logic function rung will go HIGH when only ONE of the inputs is HIGH.
This holds true for all input combinations with the exception of the state where all three input switches are closed.

Outputs

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

Inputs
A B C XOR XNOR

XNOR

XOR

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

0

1

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

XOR
<Local:2:O.Data.4>

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

XNOR
<Local:2:O.Data.5>

A_Input
<Local:1:I.Data.0>

B_Input
<Local:1:I.Data.1>

C_Input
<Local:1:I.Data.2>

A_Input

B_Input

C_Input

Slot 1
00

01

02

03

OR

NOR

XOR

XNOR

AND

NAND

Slot 2
00

01

02

03

04

05

53PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

General Overview Three Input Logic Gate Truth Table

The above figure illustrates the output logic for the basic 6 three input logic gates. Logic gates are used in
decision making rungs when conditional logic is required to direct the behaviour of a specific output.

Combinational Logic Gate Behaviour

Outputs

Three Input Logic Functions

0 0 0 0 1 0 1 0 1

0 0 1 0 1 1 0 1 0

0 1 0 0 1 1 0 1 0

0 1 1 0 1 1 0 0 1

1 0 0 0 1 1 0 1 0

1 0 1 0 1 1 0 0 1

1 1 0 0 1 1 0 0 1

1 1 1 1 0 1 0 1 0

Inputs
A B C AND NAND

Outputs
OR NOR

Outputs
XOR XNOR

A

B

C

Decision Making Logic Circuit - Combinational Logic Diagram Using Standard 2 and 3 Input Logic Gates
as well as Inverters.

54PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

Although the basic gates have been covered here, as can be seen in the figure above, the power of these basic
building blocks with respect to decision making and direction taking resides in the ability to combine them to
create combinational logic decision making program segments. The gate representation of this decision making
circuit can actually be reduced using Boolean algebra to the following logic function:

A and NOT B = Z

This can be arrived at by creating a truth table, and then using reduction theorems to simplify the logic.

The above table lists the basic 8 boolean reductions. These identities allow you to reduce the number of logic
gates being used to perform the desired logical operation.

Reduced form Boolean form

Basic Boolean Reduction Theorems

A A

5

7

8

3

4

1

2

Theorems Equivalent electric circuit

6

A

open circuit

A

short circuit

A

open circuit

open circuit

open circuit

A · A = A

A · 0 = 0

A · 1 = A

A + 1 = 1

A + 0 = A

A

A

A

A

short circuit

short circuit
A + A = 1

A · A = 0

A + A = A

A

A

A A

A

A

A

short circuit

55PROGRAM EXAMPLES

Decision Making - Ladder Logic equivalent rungs for Three input logic gates

DeMorgan's Reduction Theorems

Theorem 1. The complement of a sum equals the product of the complements.

Theorem 2. The complement of a product equals the sum of the complements.

A + B = A · B

A · B = A + B

An additional 7 general Boolean Reduction Theorems

9.	 x + y = y + x

10.	 (x + y) + z = x + (y + z)

11.	 xy = yx

12.	 1x(yz) = (xy)z

Theorem 1 allows you to convert a NOR based pair of conditions to a NAND based pair of conditions. Theorem
2 reverses this function. It can often be convenient to re-express the way in which you are viewing the condition
when trying to reduce a Boolean expression to its simplest form.

A simple reduction for our combinational gate logic example:

A

B

C

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

A B C Z

Truth Table For This Gate Array

(A~B~C)
(A~BC)

Boolean Reduction

Truth Table:	 A~B~C + A~BC = Z

Theorem 18.	 (A~B) (~C + C) = Z

Theorem 4.	 (A~B) (1) = Z

Theorem 7.	 A~B = Z

Z = A and NOT B

13.	 x(y + z) = xy + xz

14.	 x + xy = x

15.	 x +~xy = x + y

These additional boolean reduction theorems will allow you to reduce complex multiterm boolean expressions
down to their simplest forms. These 15 theorems in combination with DeMorgans theorems, (next) constitute the
basis for boolean algebra.

SUPPLEMENTAL
CONTENT3

57SUPPLEMENTAL CONTENT

In this section, you are provided with some common input and output field devices used in PLCs, their relevant
instruction, along with a brief description and schematic symbols.

COMMON PLC FIELD DEVICES
AND SCHEMATIC SYMBOLS

Instruction Full name Symbols Description

XIC/ NO Examine
If Closed
/ Normally
open

Momentary pushbutton Pushing the button will complete the
connection between the terminals
and allow the current to flow.

Single Pole Single Throw Switch
(SPST)

SPST is a switch that only has a
single input and can connect only to
one output. This means it only has
one input terminal and only one output
terminal. Serving as an on off switch,
the circuit is on when the switch is
closed and off when it’s open.

Double Pole Single Throw Switch
(DPST)

This is a pair of single pole switches
that are electrically separate but
are linked to the same mechanical
switch. A DPST switch is often used
for switching mains operated devices
as both the Live and Neutral wires
are switched on or off simultaneously.

Limit switch When used in a circuit a NO contact
in the limit switch remains open until
its actuator is pressed, and closes
the circuit.

Normally open held closed switch With this type of limit switch,
something has to continuously push
the switch to keep the contacts
closed; if the pushing stops the
contacts will open.

Pressure switch A pressure switch is a device that
operates an electrical contact when
a preset fluid pressure is reached.
The switch may be designed to make
contact either on pressure rise or on
pressure fall. A NO pressure switch
closes with the detection of a critical
pressure value.

58SUPPLEMENTAL CONTENT

Common PLC Field Devices and Schematic Symbols

Instruction Full name Symbols Description

XIC/ NO Examine
If Closed
/ Normally
open

Level switch Level switches detect the level
of liquid or solid (granules) in a
vessel. They often use float as a
level sensing element. In a NO level
switch, the switch closes and let the
current flows when the level of liquid
or solid rises to the threshold level
and disconnected when the level is
below the desired level.

Temperature switch A temperature switch is responsible
for the monitoring and controlling of
temperature, with the ability to turn on
and off when a certain temperature
is reached. NO temperature
switch closes when the threshold
temperature is reached.

Flow switch Flow switches are used to monitor
the flow rate of air or liquid within
an industrial process system. Flow
switch often use paddles as the
flow sensing elements. In NO flow
switches, the switch remains in the
default state (open) until it is triggered
by a setpoint value.

Normally-Open, Timed-Closed
Switch (NOTC)

This type of contact is normally open
when the coil is unpowered (de-
energized). The contact is closed
only after power has been applied to
the relay coils for a specific amount
of time (after the required time has
elapsed).

Normally-Open, Timed-Open
Switch (NOTO)

The normally- open time opening
(NOTO) contact will close the instant
that the timing coil receives power.
When the timing coil is de-energized,
the time delay is initiated, and the
NOTO leg will return to its open
position after the timer has timed out.

XIO/NC Examine
If Open /
Normally
closed

Momentary pushbutton When connected to the circuit, shorts
the connected terminals, and current
readily flows through the circuit.
Pushing the button will separate the
contacts and interrupt current flow for
the time the switch is pressed.

59SUPPLEMENTAL CONTENT

Common PLC Field Devices and Schematic Symbols

Instruction Full name Symbols Description

XIO/NC Examine
If Open /
Normally
closed

Limit switch When used in a circuit a NC limit
switch breaks the circuit or current
flow when its actuator is pressed.

Normally closed held open switch With this type of switch something
has to continuously push the switch
to keep the contacts open; if the
pushing stops the contacts will close.

Pressure switch In NC pressure switch, an increase
in pressure beyond the desired value
will cause the switch to open, and
disconnect the power supplied. This
would typically be applied as a high-
pressure switch.

Level switch A level switch is a sensor that detects
the presence of liquids, powder, or
granulated materials at a specific
location. Below threshold level the
contact remains closed and when the
level rises beyond the threshold, the
contact opens and disconnects the
current flow between the terminals.

Temperature switch NC temperature switch remains
closed when it senses minimal
temperature but gets open when
senses the threshold temperature.

Flow switch A flow switch is used to monitor and
control the flow rate of fluid within an
industrial process system. When the
flow rate reaches a switch’s set-point,
it can either open or close the circuit
which triggers an action. With a NC
switch, the circuit is closed (ON) until
triggered otherwise.

Normally-Closed, Timed-Open Switch
(NCTO)

This type of contact is normally
closed when the coil is unpowered
(de-energized). The contact is
opened after the coil has been
continuously powered for the
specified amount of time with the
application of power to the relay coil.

Normally-Closed, Timed-Closed Switch
(NCTC)

This type of contact is normally
closed when the coil is unpowered
(de-energized), the timing leg will
open the instant the timing coil
receives power, and will remain open
until the timer has timed out. After the
timing cycle is completed, the NCTC
leg will return to its closed position.

60SUPPLEMENTAL CONTENT

Common PLC Field Devices and Schematic Symbols

Instruction Full name Symbols Description

OTE Out put
Energize

Solenoid valve Solenoid valves consist of a coil,
plunger and sleeve assembly. Unlike
electrical switches, the terms open
and closed have opposite meanings
for valves. A normally “open” valve
freely allows fluid to flow through
it and closes when actuated. On
the other hand a normally “closed”
valve prevents the flow of fluids at
rest state and opens when actuated
allowing fluid flow. Instead of
controlling electrical power, solenoid
valves generally control fluidic power.

Relay coil Relay coil is a type of
electromagnetic switch. When a
relay is used as an OTE and the
coil gets energized, a magnetic field
is generated. This magnetic field
attracts the contacts of the relay,
causing them to be latched as long
as a specific value of holding current
flows through the coil. When the
current through the coil is reduced
below this value, the core becomes
unmagnetized and the armature
is pulled away to its unactuated
position.

Pilot lamp Pilot lamps are commonly used as
output devices in the control system.
They usually used as an indicator of
the system status.

Electric motor Motors are also commonly used
output field devices in automation
system. Motors are devices that
convert electrical energy into
mechanical energy using magnetic
fields. There are different types of AC
and DC motors used in automation
system.

M

R

61SUPPLEMENTAL CONTENT

A number system is essentially a code consisting of symbols which are assigned for each individual quantity.
Once a code is memorized, it is possible to count using this code. There are several numbering systems used in
PLCs, such as Decimal, Binary, Octal, Hexadecimal and BCD. In this section we will examine these number
systems and see how we can convert any of the other base system to the equivalent decimal number.

The radix, or base, of a number system is the total number of individual symbols in that system. The largest-
valued symbol always has a magnitude of one less than the radix. For example, the decimal number system has
a radix of 10, so the largest single digit is 10 – 1, or 9. Each number is represented by its base. If the base is 2 it
is a binary number, if the base is 8 it is an octal number, if the base is 10 it is a decimal number and if the base is
16, it is the hexadecimal number system.

All number systems use position weighting to represent the significance of an individual digit in a group of
numbers. As the digits move to the left of a decimal point, the value of the digit increases by its base power.
If a digit moves to the right of the decimal place, it decreases by its base power. When the digits are grouped
together, larger quantities can be expressed.

Decimal Number System

The decimal number system is the most common number system we are familiar with and consist of ten
individual digits, 0 through 9 to represent any number imaginable. Since there are ten digits in this system, the
decimal number system is referred to as a base 10 system and each value in this number system has the place
value of power 10. As the digits move to the left of the decimal place, they increase by a power of 10. This
means the digit in the hundreds place is ten times greater than the digit in the tens place. For example:

(625)10 = 6x102 + 2x101 + 5x100

As the digits move to the right, they decrease by a power of 10 as shown in this example:

(37.140)10 = 3x101 + 7x100 + 1x10-1 + 4x10-2 + 0x10-3

The total value of the decimal number 5911.14 is determined as follows:

	4 x 10-2 = 0.04

	1 x 10-1 = 0.1

	1 x 100 = 1

	1 x 101 = 10

	9 x 102 = 900

	5 x 103 = 5,000

		 5,911.14

Binary Number System

In PLCs the Base 2 numbering system know as the binary numbering system is used. It uses two digits 1s
and 0s to represent electrical signals of discrete numerical quantities. A discrete signal has one of two possible
states: ON or OFF, 1 or zero, high or low, energized or de-energized. A single discrete signal is also known as a
bit. When four bits are grouped together, they form what is known as a nibble. Eight bits or two nibbles is a byte.
Sixteen bits or two bytes is a word. Thirty-two bits or two words is a double-word.

NUMBER SYSTEMS AND CODES USED WITH PLC

62SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Figure 1 below is an illustration of a word in bits:

Word

Byte Byte

Nibble Nibble Nibble Nibble

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1

Typically, 5 volts is used to represent binary 1, and 0 volts is used to represent binary 0 and this indicates ON
or OFF for voltage level of 0 V or 5 V. For example, the binary word 10110111 would appear as the following
voltage levels:

5 V, 0 V, 5 V, 5 V, 0 V, 5 V, 5 V, 5 V

When the processor 'sees' these voltage levels it considers the binary number 10110111 to be present.
Because only two symbols, or digits, are used in the binary number system, the base, or radix, is two. Therefore,
the position weighting that is assigned to a binary symbol will double each position a digit is moved to the left of
the decimal point, and it will decrease by ½ each position a digit is moved to the right of the decimal point. The
digit of a binary number that has the lowest weight is called the Least Significant Bit, or LSB, and the digit with
the highest value is called the Most Significant Bit, or MSB.

A nibble of 10112 would be equal to a decimal number 11 or (1x23 + 1x21 + 1x20) or (810 + 210 + 110). A byte of
110101112 would be equal to 21510 or (1x27 + 1x26 + 1x24 + 1x22 + 1x21 + 1x20) or (12810 + 6410 + 1610 + 410 + 210
+ 110).

Figure 2 shows how base 2 numbers relate to their decimal equivalent:

Bit # Power Decimal Bit Value Max Value

0 20 1

6553510

1 21 2
2 22 4
3 23 8
4 24 16
5 25 32
6 26 64
7 27 128
8 28 256
9 29 512
10 210 1024
11 211 2048
12 212 4096
13 213 8192
14 214 16384
15 215 32678

Figure 2: Binary – Decimal Equivalent

63SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Positive Decimal Numbers

The far-left position will always be 0 for positive values. As indicated in Figure 3, this limits the maximum
positive decimal value to 32767. All positions are 1 except the far-left position.

For example:

	 0000 1001 0000 1110 = 211 + 28 + 23 + 22 + 21

	 = 2048 + 256 + 8 + 4 + 2

	 0000 1001 0000 1110 = 2318

1 x 214 = 16384

1 x 213 = 8192

1 x 212 = 4096

1 x 211 = 2048

1 x 210 = 1024

1 x 29 = 512

1 x 28 = 256

1 x 27 = 128

1 x 26 = 64

1 x 25 = 32

1 x 24 = 16

1 x 23 = 6

1 x 22 = 4

1 x 21 = 2

1 x 20 = 1

32767

0 x 215 = 0 This position is always zero for positive numbers.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3

64SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Negative Decimal Numbers

A negative number is represented by a subtraction symbol in front of the number and if a decimal number is
positive, it has a plus sign; this indicates that each number has both a magnitude and a sign. It is not possible
to use positive and negative symbols to represent the polarity of a number in PLCs, so we simply use an
extra digit, or a sign bit at the MSB of the number. Figure 4 shows a four-bit binary number expressed in sign
magnitude form:

Decimal value
Magnitude

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+ 7

+ 6

+ 5

+ 4

+ 3

+ 2

+ 1

0

- 1

- 2

- 3

- 4

- 5

- 6

- 7

Sign

Figure 4: Signed Binary Number

The far-left position is always 1 for negative numbers. The equivalent decimal value of the binary number
is obtained by subtracting the value of the far-left position, 32768, from the sum of the values of the other
positions. In Figure 5, the value is 32767 - 32768 = -1. All positions are 1.

For example:

1111 1000 0010 0011

= (214 + 213 + 212 + 211 + 25 + 21 + 20) - 215

= (16384 + 8192 + 4096 + 2048 + 32 + 2 + 1) - 32768

= 30755 - 32768

= -2013.

65SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

1 x 214 = 16384

1 x 213 = 8192

1 x 212 = 4096

1 x 211 = 2048

1 x 210 = 1024

1 x 29 = 512

1 x 28 = 256

1 x 27 = 128

1 x 26 = 64

1 x 25 = 32

1 x 24 = 16

1 x 23 = 6

1 x 22 = 4

1 x 21 = 2

1 x 20 = 1

32767

1 x 215 = 32768 This position is always 1 for negative numbers.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5

An often-easier way to calculate a value is to locate the last 1 in the string of 1s beginning at the left and
subtract its value from the total value of positions to the right of that position.

For example:

	1111 1111 0001 1010 = (24 + 23 + 21) - 28

	 = (16 + 8 + 2) - 256

	 = -230.

The 2s complement notion is also used to express a negative binary number. If a binary number has the value
1, the complement would be 0 and if the binary number is 0, the complement would be 1. In other words, the

66SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

1's complement of 1001 is 0110. When negative numbers are represented in 1's complement, each negative
number's magnitude is the 1's complement of the corresponding positive number's magnitude. Figure 6 shows
the 1’s complement of four-digit binary numbers.

Decimal value
Magnitude

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

+ 7

+ 6

+ 5

+ 4

+ 3

+ 2

+ 1

0

- 1

- 2

- 3

- 4

- 5

- 6

- 7

Sign

Figure 6

2s complement is similar to the 1’s complement but 1 digit is used to represent the sign. Using the 2's
complement, binary numbers are actually added together to produce a subtraction operation. 2's complement
= 1 + 1's complement.

Binary and Decimal Conversion

The conversion of binary digits to decimal is referred to as decoding. When a number is manually converted
from binary to decimal, the position weight of each binary digit is added together. The result is the equivalent
decimal number.

67SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Example: Convert 110012 to decimal.

The sum of 1 + 8 + 16 = 25. Therefore, the decimal equivalent of binary number 11001 is 25.

Decimal values that are entered into a digital machine must be converted, or encoded, into binary form. To
convert a decimal number into binary form, divide the decimal number by 2 and record the remainders as
shown:

Convert 2510 to binary:

1 1 0 0 1

= 12 + remainder of 1

MSB LSB

2

25

= 6 + remainder of 0
2

12

= 3 + remainder of 0
2

6

= 1 + remainder of 1
2

3

= 0 + remainder of 1
2

1

The equivalent binary number of decimal number 25 is 11001.

1 1 0 0 1

1 x 20 = 1

1 x 21 = 0

1 x 22 = 0

1 x 23 = 8

1 x 24 = 16

25

68SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Octal Number System

The octal number system has a base of eight, which means that it has eight possible digits: 0, 1, 2, 3, 4, 5, 6,
and 7. Position weighting is applied to the octal system in the same way it is applied to the decimal and binary
systems. So as digits move to the left of the decimal place, they increase by the power of their base and as the
digits move to the right of the decimal place, they decrease by the power of base 8.

The weights of the digit positions in an octal number are as follows:

8n..... 84 83 82 81 80 . 8-1 8-2 8-3 8-4....8-n

Converting Octal to Decimal

To convert an octal number to a decimal number, multiply each octal digit by its weight and add the resulting
products. For example, octal number 17 is converted to decimal in the following manner:

1(81) + 7(80) = 8 + 7 = 17 decimal

Converting Decimal to Octal

To convert a decimal number to an octal number we divide the decimal number by 8. The remainders form the
decimal number, with the first remainder being the least-significant digit and the last remainder being the most-
significant digit.

Here is an example of converting 21410 to octal:

	214 = 26 with a remainder of 6

	 26 = 3 with a remainder of 2

	 3 = 0 with a remainder of 3

	Result = 326

When converting a decimal fraction to octal, the decimal number is multiplied instead of divided. Also, the first
number divided is now the most- significant digit, and the last number is the least- significant digit.

For example, to change 0.3510 to octal, proceed as follows:

	0.35 x 8 = 2.8 = 0.8 with a carry of 2

	0.8 x 8 = 6.4 = 0.4 with a carry of 6

	0.4 x 8 = 3.2 = 0.2 with a carry of 3

	 etc.

	Result = 0.263

Converting Octal to Binary

To convert an octal number to its binary equivalent we change each octal digit to its three-bit binary equivalent.
The eight possible digits are converted as shown in Figure 7:

8

8

8

69SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Octal Number 0 1 2 3 4 5 6 7

Binary Equivalent 000 001 010 011 100 101 110 111

Figure 7

Here are examples of converting octal numbers to their binary equivalent:

1.	 	 Converting octal 137 to binary:

1 3 7

001 011 111

		 The binary equivalent of 1378 is 001 011 111, or 1011111

2.	 	 Converting octal 14.52 to binary:

1 4 . 5 2

001 100 . 101 010

		 The binary equivalent of 14.528 is 001 100 . 101 010, or 1100 . 101010

Converting Binary to Octal

To convert a binary number to octal, simply divide the binary number into groups of three bits starting from the
least significant bit to the most significant bit, then convert each three bits group binary number to their octal
equivalent value using the 4-2-1 weighting. If the last group does not have three bits, add 0s to most significant
digit side of the binary number.

Here are examples of converting binary numbers to their octal equivalent:

3.	 	 Convert binary number 1101010111011110 to octal number

001 101 010 111 011 110

1 5 2 7 3 6

		 11010101110111102 = 1527368

70SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

4.	 	 Convert binary number 100011.1011 to octal number

100 011 . 101 100

4 3 . 5 4

		 100011.10112 = 43.548

Hexadecimal Number System

Hexadecimal or Hex is a numbering system that uses Base 16. This system uses the ten digits in the decimal
system, 0 through 9, as well as the first six letters of the alphabet, A, B, C, D, E, and F with each letter
representing the decimal numbers 10 through 15. Since binary number system is widely used in PLC and
easy to interpret for a few bits we will see that Hex aid in simplifying the lengthy combination of bits for very
large numbers since it can become difficult to keep track of the bit position when converting very large binary
numbers. Figure 8 shows the comparison between decimal, binary and hexadecimal digits.

Decimal Binary Hexadecimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Figure 8

The weights of the digit positions in a hexadecimal number are as follows:

164 163 162 161 160 . 16-1 16-2 16-3 16-4

Converting Hexadecimal to Decimal

To convert a hexadecimal number to a decimal number, multiply each hexadecimal digit by its weight and add
the resulting products together. The following examples illustrates hexadecimal to decimal conversion:

71SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

1.	 	 63716 = 6 x 162 + 3 x 161 + 7 x 160

 	 	 = 1,536 + 48 + 7

		 63716 = 1,59110

2.	 	 4CF16 = 4 x 162 + 12 x 161 + 15 x 160

 	 	 = 1,024 + 192 + 15

		 4CF16 = 123110

Converting Decimal to Hexadecimal

Similar to converting from a decimal number to binary or to octal number, we convert form a decimal to a
hexadecimal number by dividing the decimal number by 16 (the base) and keep track of the remainders. The
remainder forms the equivalent hexadecimal number.

Here is an example of converting 541 to hex:

541 = 33 with a remainder of 13 (D) - (MSB)

	 33 = 2 with a remainder of 1

	 1 = 0 with a remainder of 1 - (LSB)

	The hexadecimal equivalent of the decimal number 54110 is 11D16.

Converting Hexadecimal to Binary

To convert hexadecimal to binary we determine the four bit equivalent binary digit for each hexadecimal digit
using the 8-2-4-1 system shown in Figure 9 and the decimal equivalence is also shown.

Hexadecimal
2 1 8 A

8-4-2-1 8421 8421 8421 8421 8-4-2-1

Binary 0010 0001 1000 1010 0010000110001010

NOTE the conversion to Decimal

Binary 0010 0001 1000 1010 0010000110001010

Conversion 1x213 1x28 1x27 1x23 + 1x21

Decimal 8192 256 128 8 + 2 8586

Figure 9a: Hexadecimal 218A = 0010000110001010

16

16

16

72SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Decimal
8586

Binary 0010 0001 1000 1010 = 8586

1’s Complement 1101 1110 0111 0101

2’s Complement 1101 1110 0111 0110 = -8586

Hexadecimal D E 7 6 = 56905

Figure 9b: Decimal number -8586 in equivalent binary and hexadecimal forms

Hexadecimal number DE76 = 13x163+14x162+7x161+6x160 = 56950.

We know this is a negative number because it exceeds the maximum positive value of 32767. To calculate its
value, subtract 164 (the next higher power of 16) from 56950: 56950 - 65536 = -8586 OR work backwards from
2’s complement to 1’s complement, then invert the binary digits and convert to decimal to obtain the negative
decimal equivalent value.

Binary Coded Decimal (BCD)

Like Octal and Hexadecimal, the BCD numbering system relies on bit-coded digits in base 10. It modifies the
binary number system where the decimal digits are independently coded as four-bit binary numbers. We will
examine the 8-4-2-1 BCD system in this discussion. The designation 8-4-2-1 indicates the binary weights of
the four bits (23, 22, 21, 20). Using four bits, it is possible to count from 1 to 15. However, in the BCD system, the
maximum value is 9, the six numbers over 9 are not valid, since it must convert to a single digit. Any number
over 9 must be represented by two BCD numbers, or eight bits as shown in Figure 10.

Decimal BCD Binary

0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 0001 0000 1010
11 0001 0001 1011
12 0001 0010 1100
13 0001 0011 1101
14 0001 0100 1110
15 0001 0101 1111

Figure 10

73SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

BCD Conversion

A decimal number is expressed as BCD by changing each digit to its binary equivalent as illustrated for decimal
value 317:

3 1 7 (Decimal)

0011 0001 0111 (BCD)

001100010111 is the BCD equivalent of decimal number 317, however the 0s on the MSB side can be ignored
so 1100010111 is also a correct expression of the decimal number 317.

To determine a decimal number from a BCD number. Start at the least significant bit and break the code into
groups of four bits. The decimal digit represented by each four-bit group is then written as shown:

0111 1000 . 1001 (BCD)

7 8 . 9 (Decimal)

Parity Bit, Grey Code and ASCII

In PLCs when data is being transferred between PLCs or from a PLC to a peripheral device, a binary digit can be
changed accidentally. A parity bit is used in transmission to detect errors when a word is being moved. There
are two methods Even parity and Odd parity which is used to detect errors. Even parity adds a digit to a binary
word to make the total number of 1s in the word even. For instance the binary word 010101. There are three
1s in this word, therefore, to make the word conform to even parity, a 1 is added to the end of the word, which
results in 0101011. A word that already had an even number of ones would have a 0 parity bit. Likewise, Odd
parity is used to make the number of 1's odd. Figure 11 shows the 8-4-2-1 code with even and odd parity.

8-4-2-1 Code Even Parity Bit Odd Parity Bit

0000 0 1

0001 1 0

0010 1 0

0011 0 1

0100 1 0

0101 0 1

0110 0 1

0111 1 0

1000 1 0

1001 0 1

Figure 11: 8-4-2-1 Code with Even and Odd Parity

74SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

The Gray code is a special type of binary code that does not use position weighting. In other words, each
position does not have a definite weight. It is used to minimize the error that may occur when transitioning form
one number to the next through a sequence. Gray code is set up so that as we progress from one number to the
next, only one bit changes. This makes the speed of transmission faster than codes like BCD since only one bit
changes at a time. The Gray code is ideally suited for absolute encoders and other digital counting devices due
to the high degree of accuracy associated with this code. Here in Figure 12 is a comparison of Gray code and
binary equivalents with respect to decimal:

Decimal Binary Gray Code Decimal of Gray

0 0000 0000 0

1 0001 0001 1

2 0010 0011 3

3 0011 0010 2

4 0100 0110 6

5 0101 0111 7

6 0110 0101 5

7 0111 0100 4

8 1000 1100 12

9 1001 1101 13

10 1010 1111 15

11 1011 1110 14

12 1100 1010 10

13 1101 1011 11

14 1110 1001 9

15 1111 1000 8

Figure 12

The decimal value "1" is representation in binary would normally be "0001" and "2" would be "0010". In Gray
code, these values are represented as "0001" and "0011". That way, incrementing a value from 1 to 2 requires
only one bit to change, instead of two.

The abbreviation ASCII stands for American Standard Code for Information Interchange. It is an
alphanumeric code which includes letters as well as numbers and special characters such as those found on
standard typewriters and computer keyboards. These includes 10 numeric digits, 26 upper-case letters, 26
lower-case letters and 25 special characters.

The ASCII code is a seven-bit code in which the decimal digits are represented by the 8-4-2-1 BCD code
preceded by 011. Upper-case letters are preceded by 100 or 101. Lower-case letters are preceded by 110 or
111. Character symbols are preceded by 010, 011, 101, and 111. This seven-bit code provides all possible
combinations of characters used when communicating with peripherals or interfaces in a PLC system. In
Figure 13a we find a partial listing of the ASCII code and a Standard ASCII Control Code and Character Code
in Figure 13b.

75SUPPLEMENTAL CONTENT

Number Systems and Codes used with PLC

Character 7-bit ASCII Character 7-bit ASCII

A 100 0001 P 011 0100
B 100 0010 Q 011 0101
C 100 0011 R 101 0010
D 100 0100 S 101 0011
E 100 0101 T 101 0100
F 100 0110 U 101 0101
G 100 0111 V 101 0110
H 100 1000 W 101 0111
I 100 1001 X 101 1000
J 100 1010 Y 101 1001
K 100 1011 Z 101 1010
L 100 1100 ‘ 010 1100
M 100 1101 + 010 1010
N 100 1110 # 010 0011
O 100 1111 - 011 1101

Figure 13a: Partial Listing of ASCII Code

Bin 000 001 010 011 100 101 110 111

Hex 0 1 2 3 4 5 6 7

0000 0 NUL DLE SP 0 @ P ` p

0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 " 2 B R b r

0011 3 ETX DC3 # 3 C S c s
0100 4 EOT DC4 $ 4 D T d t

0101 5 ENQ NAK % 5 E U e u
0110 6 ACK SYN & 6 F V f v
0111 7 BEL ETB ' 7 G W g w
1000 8 BS CAN (8 H X h x
1001 9 HT EM) 9 I Y i y
1010 A LF SUB * : J Z j z
1011 B VT ESC + ; K [k {
1100 C FF FS , < L \ l |
1101 D CR GS - = M] m }
1110 E SO RS . > N ^ n ~
1111 F SI US / ? O _ o DEL

Figure 13b: Standard ASCII Control Code and Character Code

76SUPPLEMENTAL CONTENT

The PLCLogix instructions encompass all the main ladder logic programming commands associated with Logix
5000. The PLCLogix Instruction Set consists of the following groups of commands: Bit Instructions, Timer
and Counter Instructions, Program Control, Compare, Communications, Math, and Data Handling/Transfer
instructions.

1. Bit Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

XIC Examine If Closed Examines a bit for an On (set,
high) condition.

XIO Examine If Open Examines a bit for an Off
(cleared, low) condition.

OTE Output Energize When rung conditions are
true, the OTE will either set or
clear the data bit.

OTL Output Latch When enabled, the instruction
signals to the controller to turn
on the addressed bit. The bit
remains on, regardless of the
rung condition.

OTU Output Unlatch When enabled, it clears
(unlatches) the data bit. The
bit remains Off, regardless of
rung condition.

ONS One Shot Enable/disable outputs for
one scan. Storage bit status
determines whether this
instruction enables or disables
the rest of the rung.

OSR One Shot Rising A retentive input instruction
that triggers an event to occur
once. It either sets or clears the
output bit, depending on the
storage bit status.

OSF One Shot Falling This instruction either sets
or clears the output bit,
depending on the storage bit’s
status.

CORE INSTUCTION SET

?

?

?

?
L

?
U

?

ONS

One Shot Ris ing
OSR

Storage Bit

Output Bit

?

?

OB

SB

One Shot Fal l ing
OSF

Storage Bit

Output Bit

?

?

OB

SB

77SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

2. Timer and Counter Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

TON Timer ON Delay A non-retentive timer that
accumulates time when the
instruction is enabled. The
accumulated value is reset
when rung conditions go
false.

TOF Timer Off Delay A non-retentive timer that
accumulates time when the
rung makes a true-to-false
transition.

RTO Retentive Timer On A retentive timer that
accumulates time when
the instruction is enabled.
Retains its accumulated
value when rung conditions
become false.

CTU Count Up An instruction that
counts false-to-true
rung transitions. It
counts upward and the
accumulated value is
incremented by one
count on each of these
transitions.

CTD Count Down This instruction counts
downward on each false-
to-true rung transition.
The accumulated value
is decremented by one
count on each of these
transitions.

RES Reset This instruction is used
to reset a timer, counter
or control structure. The
accumulated value of these
instructions are cleared
when the RES instruction is
enabled.

Timer Off Delay
TOF

Timer
Preset
Accum

EN

DN?
?
?

Retent ive Timer On
RTO

Timer
Preset
Accum

EN

DN?
?
?

Count Up
CTU

Timer
Preset
Accum

EN

DN?
?
?

Count Down
CTD

Timer
Preset
Accum

EN

DN?
?
?

?
RES

Timer On Delay
TON

Timer
Preset
Accum

EN

DN?
?
?

78SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

3. Program and Control Instructions

Instruction Mnemonic Instruction Name Symbol Description

JSR Jump to Subroutine JSR
Jump to Subroutine
Routine name ?
Input par ?
Return par ?

This instruction jumps
execution to a specific
routine and initiates the
execution of this routine,
called a subroutine.

SBR Subroutine Stores recurring sections of
program logic.

RET Return Used to return to the
instruction following a
JSR operation.

JMP Jump to Label Skips sections of ladder
logic.

LBL Label Target of the JMP
instruction with the same
label name.

MCR Master Cont. Res. Used in pairs to create a
program zone that can
disable all rungs between
the MCR instructions.

NOP No Operation This instruction functions
as a placeholder.

END End End rung in ladder logic
circuit.

AFI Always False
Instruction

Sets the rung condition to
False.

SBR
Subroutine
Input par ?

RET
Return
Return par ?

?

JMP

?

LBL

MCR

NOP

END

AFI

79SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

4. Compare Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

EQU Equal This instruction is used to
test whether two values are
equal. If Source A is equal
to Source B, the instruction
is logically true.

GEQ Greater Than or
Equal To

Determines whether source
A is greater than or equal
to Source B. If the value
at Source A is greater
than or equal to the value
at Source B, then the
instruction is true.

GRT Greater Than This instruction is used
to test whether one value
(Source A) is greater than
another value (Source B).

LEQ Less Than or Equal
To

Determines whether one
value (Source A) is less
than or equal to another
(Source B).

LES Less Than This instruction determines
whether Source A is less
than Source B.

LIM Limit This instruction is used to
test for values within the
range of the Low Limit to
the High Limit.

EQU
Equal

?
??

?
??

Source A

Source B

GEQ
Grtr Than or Eql (A >= B)

?
??

?
??

Source A

Source B

GRT
Grtr Than (A > B)

?
??

?
??

Source A

Source B

LES
Less Than (A<B)

?
??

?
??

Source A

Source B

LEQ
LessThan or Eql (A <= B)

?
??

?
??

Source A

Source B

LIM
Limit Test (CIRC)

?
??

?
??

?
??

Low Limit

Test

High Limit

80SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

Instruction
Mnemonic

Instruction Name Symbol Description

MEQ Mask Equal To Passes the Source and
Compare values through
a Mask and compares the
results.

NEQ Not Equal To This instruction tests
whether Source A is not
equal to Source B.

MEQ
Mask Equal

?
??

?
??

?
??

Source

Mask

Compare

NEQ
Not Equal

?
??

?
??

Source A

Source B

4. Compare Instructions

81SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

5. Math Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

ADD Add Adds Source A to Source B
and stores the result in the
Destination.

SUB Subtract Subtracts Source B from
Source A and places the
result in the Destination.

MUL Multiply Multiplies Source A by
Source B and stores the
result in the destination.

DIV Divide Divides Source A by
Source B and places the
result in the Destination.

MOD Modulo Divides Source A by
Source B and stores
the remainder in the
Destination.

ADD
Add

?
??

?
??

?
??

Source A

Source B

Dest

SUB
Subtract

?
??

?
??

?
??

Source A

Source B

Dest

MUL
Mult iply

?
??

?
??

?
??

Source A

Source B

Dest

DIV
Divide

?
??

?
??

?
??

Source A

Source B

Dest

MOD
Modulo

?
??

?
??

?
??

Source A

Source B

Dest

82SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

5. Math Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

SQR Square Root Calculates the square root
of the source and places
the float result in the
Destination.

NEG Negate Changes the sign (+, -) of
the Source and stores the
result in the Destination.

ABS Absolute Value Takes the absolute value of
the Source and places the
result in the Destination.

SQR
Square Root

?
??

?
??

?
??

Source A

Source B

Dest

NEG
Negate

?
??

?
??

Source

Dest

ABS
Absolute Value

?
??

?
??

Source

Dest

83SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

Advanced Math Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

SIN Sine Takes the sine of the
Source value (in radians}
and places the result in the
Destination.

COS Cosine Takes the cosine of the
Source value (in radians)
and places the result in the
Destination.

TAN Tangent Takes the tangent of the
Source value (in radians)
and stores the result in the
Destination.

ASN Arc Sine Takes the arc sine of the
Source value and places
the result in the Destination
(in radians).

ACS Arc Cosine Takes the arc cosine of the
Source value and stores
the result in the Destination
(in radians).

ATN Arc Tangent Takes the arc tangent
of the Source value and
stores the result in the
Destination (in radians).

SIN
Sine

?
??

?
??

Source

Dest

COS
Cosine

?
??

?
??

Source

Dest

TAN
Tangent

?
??

?
??

Source

Dest

ASN
Arc Sine

?
??

?
??

Source

Dest

ACS
Arc Cosine

?
??

?
??

Source

Dest

ATN
Arc Tangent

?
??

?
??

Source

Dest

84SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

Instruction
Mnemonic

Instruction Name Symbol Description

LN Natural Log Takes the natural log of
the Source value and
stores the result in the
Destination.

LOG Log to the Base 10 Takes the log base 10
of the Source value and
stores the result in the
Destination.

XPY X to the power of Y Takes Source A (X) to the
power of Source B (Y) and
stores the result in the
Destination.

LN
Natural Log

?
??

?
??

Source

Dest

LOG
Log Base 10

?
??

?
??

Source

Dest

XPY
X To Power Of Y

?
??

?
??

?
??

Source X

Source Y

Dest

Advanced Math Instructions

85SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

6. Data Handling /Transfer Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

TOD Convert to BCD This instruction converts
a decimal value to a BCD
value and stores the result
in the Destination.

FRD Convert to Integer Converts a BCD value
(Source) to a decimal value
and stores the result in the
Destination.

MOV Move Copies the Source (which
remains unchanged) to the
Destination.

MVM Masked Move Copies the Source to a
Destination and allows
segments of the data to be
masked.

DEG Degrees Converts the Source (in
radians) to degrees and
places the result in the
Destination.

RAD Radians Converts the Source (in
degrees) to radians and
stores the result in the
Destination.

TOD
To BCD

?
??

?
??

Source

Dest

FRD
FROM BCD

?
??

?
??

Source

Dest

MOV
MOV

?
??

?
??

Source

Dest

MVM
Masked Move

?
??

?
??

?
??

Source

Mask

Dest

DEG
Radians to Degrees

?
??

?
??

Source

Dest

RAD
Degrees to Radians

?
??

?
??

Source

Dest

86SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

Instruction
Mnemonic

Instruction Name Symbol Description

XOR Bitwise Exclusive OR Performs a bitwise XOR
operation using the bits
in Source A and Source B
and stores the result in the
Destination.

CLR Clear Clears all the bits of the
Destination

SWPB Swap Byte Rearranges the bytes
stored in a tag.

XOR
Bitwise Exclusive OR

?
??

?
??

?
??

Source A

Source B

Dest

CLR
Clear
Dest ?

??

SWPB
Swap Byte

?
??

?
?

??

Source

Order Mode
Dest

6. Data Handling /Transfer Instructions

87SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

7. Array/Shift Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

BSL Bit Shift Left Shifts the specified bits
within the Array (DINT) one
position left.

BSR Bit Shift Right Shifts the specified bits
within the Array one
position right.

FFL FIFO Load Copies the Source Value
into a FIFO queue on
successive false-to-true
transitions.

FFU FIFO Unload Unloads the Source value
from the first position of the
FIFO and stores that value
in the Destination..

LFL LIFO Load Copies the Source value to
the LIFO.

LFU LIFO Unload Unloads the value at .POS
of the LIFO and stores 0 in
that location.

EN

DN

Bit Shif t
Left
Array
Control
Source Bit
Length

?
?
?
?

BSL

EN

DN

Bit Shif t
Left
Array
Control
Source Bit
Length

?
?
?
?

BSR

EN

DN

EM

FIFO
Load
Source
FIFO
Control
Length
Posit ion

?
?
?
?
?

FFL

EU

DN

EM

FIFO
Unload
FIFO
Dest
Control
Length
Posit ion

?
?
?
?
?

FFU

EN

DN

EM

LIFO
Load
Source
LIFO
Control
Length
Posit ion

?
?
?
?
?

LFL

EU

DN

EM

LIFO
Unload
LIFO
Dest
Control
Length
Posit ion

?
?
?
?
?

LFU

88SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

8. Sequencer Instruction

Instruction
Mnemonic

Instruction Name Symbol Description

SQI Sequencer Input Detects when a step is
complete in a sequence
pair of SQO/SQI
instructions.

SQO Sequencer Output Sets output conditions
for the next step of
sequence pair of SQO/SQI
instructions.

SQL Sequencer Load Loads reference conditions
into a sequencer array.

SQC Seq. Compare RSLogix 500 instruction.
Supported by PLCLogix.

Sequencer
Input
Array
Mask
Source
Control
Length
Posit ion

?
?
?
?
?
?

SQI

EN

DN

Sequencer
Output
Array
Mask
Dest
Control
Length
Posit ion

?
?
?
?
?
?

SQO

EN

DN

Sequencer
Load
Array
Source
Control
Length
Posit ion

?
?
?
?
?

SQL

EN

DN

FD

Sequencer
Compare
Fi le
Mask
Source
Control
Length
Posit ion

?
?
?
?
?
?

SQC

89SUPPLEMENTAL CONTENT

CORE INSTUCTION SET

9. Communication Instructions

Instruction
Mnemonic

Instruction Name Symbol Description

GSV Get System Data Gets controller system data
that is stored in objects.

SSV Set System Data Sets controller system data
that is stored in objects.

Set System
Value
Class Name
Instance Name
Attr ibute Name
Dest

?
?
?
?

??

SSV

Get System
Value
Class Name
Instance Name
Attr ibute Name
Dest

?
?
?
?

??

GSV

PLC Technician Handbook - 2022 Edition

The PLC handbook serves as a useful tool to technicians who are in training and in the workforce. It is a text designed to provide
guidance by illustrating important concepts, tips and common practices and supplemental content that is relevant to the field.

To learn more about George Brown College School of Distance Education Technical Training, visit www.gbctechtraining.com

For specific information about each of our Online Certificate Programs, visit the following sites:

Automation Technician Certificate Program - www.automationprogram.com

Electronics Technician Certificate Program - www.etcourse.com

Electromechanical Technician Certificate Program - www.emcourse.com

Programmable Logic Controllers Technician Certificate Program - www.plctechnician.com

Robotics Technician Certificate Program - www.onlinerobotics.com

Any questions? Speak to a Program Consultant toll-free at 1 888-553-5333 or email us at info@gbctechtraining.com.

www.gbctechtraining.com

	PLC Technician Handbook Cover
	Preface
	Table of Contents
	1. PLC Technician Handbook
	A General Overview of PLCs
	What are the essential elements of a PLC system?
	How PLCs are applied in various industries
	The evolution of PLCs

	Basics of Programming
	Different types of PLC programming languages
	Basic Instructions and Operation of a PLC
	Time Driven routine segments
	Event Driven program segments
	Counters

	Tips and Common Practices
	SCADA, what is it and how does it work
	File based addressing
	Reducing Scan time

	2. Program Examples
	PLC Timer Instructions
	Decision Making

	3. Supplemental Content
	Common PLC Field Devices and Schematic Symbols
	Number Systems and Codes used with PLC
	Core Instruction Set

